Effect of Soft Soil Model Parameters on Soil Behavior
Year 2018,
Volume: 33 Issue: 1, 97 - 106, 15.03.2018
Firdevs Uysal
,
Baki Bağrıaçık
Abdulazim Yıldız
Abstract
Soft soils such as clays have a high porosity and demonstrate a high compressibility compared to other type soils. In oedometer testing, normally consolidated clays behave up to ten times softer than normally consolidated sands [1]. Clay soils have very low permeability which is highly important to govern consolidation rate. In this study, first task has been to investigate the primary consolidation behaviour of soft clay by using a large-scale laboratory oedometer test. The reconstituted specimen of kaolin clay was used to represent the soft clay. The kaolin powder was mixed at a water content of about 1.5 times the liquid limit and has been consolidated by the axial stress of 30kPa. Secondly, the effect of the soil parameters obtained from standard laboratory tests on soft clay behaviour was researched with numerical finite element analysis computations in Plaxis 2D. Soft Soil material model was utilized during the finite element computations and input parameters were calculated from standard laboratory tests. The simulations demonstrate that it is very important to determine appropriate model parameters for modelling soft soil behaviour.
References
- 1. Plaxis, 2012. Plaxis 2D - Reference Manual 2012. Plaxis B.V, Delft, Netherlands.
- 2. Bjerrum, L., 1967. Engineering Geology of Norwegian Normally Consolidated Marine Clays as Related to Settlement of Buildings. Geotechnique, 17, 81-118.
- 3. Vaid, Y.P., Campanella, R.G., 1977. Time-dependent Behaviour of Undisturbed Clay, Journal of the Geotechnical Engineering Division, 103(7), 693-709.
- 4. Graham, J., Crooks, J.H.A., Bell, A.L., 1983. Time Effects on the Stress-strain Behaviour of Natural Soft Clays. Ge´otechnique, 33(3), 327-340.
- 5. Sheahan, T.C., Ladd, C.C., Gernaine, J.T., 1996. Rate-dependent Undrained Shear Behavior of Saturated Clay, Journal of Geotechnical Engineering, 122, 99-108.
- 6. Yin, J.H., Cheng, C.M., 2006. Comparison of Strain-rate Dependent Stress–strain Behaviour from K0-consolidated Compression and Extension Tests on Natural Hong Kong Marine deposits. Marine Georesources and Geotechnology 24 (2), 119–147.
- 7. Roscoe, K.H., Schofield, A.N., 1963. Mechanical Behaviour of an Idealised, Wet-Clay. 2nd ECSMFE, 1, 47-54.
- 8. Roscoe, K.H., Burland, J.B., 1968. On the Generalized Stresstrain Behaviour of Wet Clay. In Engineering Plasticity, eds. J. Heyman and F.A. Leckie, 535-609. Cambridge, England.
- 9. Burland, J.B., 1965. Some Aspects of the Mechanical Behaviour of Partly Saturated Soils, Moisture Equilibrium and Moisture Changes in Soil Beneath Covered Areas, Australia, Butterworth.
- 10. Neher, H.P., Wehnert, M., Bonnier, P.G., 2001. An Evaluation of Soft Soil Models Based on Trial Embarkment. In C.S. Desai (Ed), Computer Methods and Advances in Geomechanics, TUSCOM, Arizona, 1, 373-378. A.A. Balkema.
- 11. Muir Wood, D., Hu, W., Nash, D.F.T., 2000. Group Effects in Stone Column Foundations: Model Tests. Ge´otechnique, 50(6), 689–698.
- 12. Bin Hasan, M., Binti Marto, A., Hyodo, M., Bin Makhtar, A.M., 2011. The Strength of Soft Clay Reinforced with Singular and Group Bottom Ash Columns. Electronic Journal of Geotechnical Engineering, 16 N. 1215-1227. ISSN 1089-3032.
- 13. Frikha, W., Bouassida, M., Canou, J., 2014. Parametric Study of a Clayey Specimen Reinforced by a Granular Column. Int. J. Geomech., 10.1061/(ASCE) GM.1943-5622. 0000419, 04014078.
- 14. Cimentada, A., Da Costa, A., Cañizal, J., Sagaseta, C., 2011. Laboratory Study on Radial Consolidation and Deformation in Clay Reinforced with Stone Columns. Can Geotech J; 48(1), 36–52.
- 15. Brinkgreve, R.B.J., 2002. Plaxis Manual. Rotterdam, Balkema.
Yumuşak Zemin Model Parametrelerinin Zemin Davranışına Etkisi
Year 2018,
Volume: 33 Issue: 1, 97 - 106, 15.03.2018
Firdevs Uysal
,
Baki Bağrıaçık
Abdulazim Yıldız
Abstract
Kil gibi yumuşak zeminler yüksek poroziteye sahiptir ve diğer zemin türleri ile karşılaştırıldığı zaman yüksek sıkışabilirlik göstermektedir. Ödometre deneyinde, normal konsolide killer normal konsolide kumlara göre on kat daha yumuşak davranmaktadır [1]. Kil zeminler çok düşük permeabiliteye sahiptir ve permeabilite konsolidasyon oranının idaresinde oldukça önemlidir. Bu çalışmada ilk olarak yumuşak kilin birincil konsolidasyon davranışı büyük ölçekli bir laboratuvar oedometre deneyi kullanılarak incelenmiştir. Yumuşak kili temsil etmesi için yeniden yapılandırılmış kaolin kili kullanılmıştır. Kaolin tozu likit limitin 1,5 katı kadar su ile karıştırılarak 30kPa değerinde bir eksenel basınç ile konsolide edilmiştir. Çalışmanın ikinci kısmında, klasik laboratuvar deneylerinden elde edilen zemin parametrelerinin, yumuşak zemin davranışına etkisi Plaxis 2D sonlu eleman hesapları ile araştırılmıştır. Sonlu eleman hesaplarında Yumuşak Zemin Modeli kullanılmıştır ve model parametreleri standart laboratuvar deneylerinden elde edilmiştir. Simulasyonlar uygun model parametrelerinin belirlenmesinin yumuşak zemin davranışının modellenmesinde oldukça büyük bir öneme sahip olduğunu göstermektedir.
References
- 1. Plaxis, 2012. Plaxis 2D - Reference Manual 2012. Plaxis B.V, Delft, Netherlands.
- 2. Bjerrum, L., 1967. Engineering Geology of Norwegian Normally Consolidated Marine Clays as Related to Settlement of Buildings. Geotechnique, 17, 81-118.
- 3. Vaid, Y.P., Campanella, R.G., 1977. Time-dependent Behaviour of Undisturbed Clay, Journal of the Geotechnical Engineering Division, 103(7), 693-709.
- 4. Graham, J., Crooks, J.H.A., Bell, A.L., 1983. Time Effects on the Stress-strain Behaviour of Natural Soft Clays. Ge´otechnique, 33(3), 327-340.
- 5. Sheahan, T.C., Ladd, C.C., Gernaine, J.T., 1996. Rate-dependent Undrained Shear Behavior of Saturated Clay, Journal of Geotechnical Engineering, 122, 99-108.
- 6. Yin, J.H., Cheng, C.M., 2006. Comparison of Strain-rate Dependent Stress–strain Behaviour from K0-consolidated Compression and Extension Tests on Natural Hong Kong Marine deposits. Marine Georesources and Geotechnology 24 (2), 119–147.
- 7. Roscoe, K.H., Schofield, A.N., 1963. Mechanical Behaviour of an Idealised, Wet-Clay. 2nd ECSMFE, 1, 47-54.
- 8. Roscoe, K.H., Burland, J.B., 1968. On the Generalized Stresstrain Behaviour of Wet Clay. In Engineering Plasticity, eds. J. Heyman and F.A. Leckie, 535-609. Cambridge, England.
- 9. Burland, J.B., 1965. Some Aspects of the Mechanical Behaviour of Partly Saturated Soils, Moisture Equilibrium and Moisture Changes in Soil Beneath Covered Areas, Australia, Butterworth.
- 10. Neher, H.P., Wehnert, M., Bonnier, P.G., 2001. An Evaluation of Soft Soil Models Based on Trial Embarkment. In C.S. Desai (Ed), Computer Methods and Advances in Geomechanics, TUSCOM, Arizona, 1, 373-378. A.A. Balkema.
- 11. Muir Wood, D., Hu, W., Nash, D.F.T., 2000. Group Effects in Stone Column Foundations: Model Tests. Ge´otechnique, 50(6), 689–698.
- 12. Bin Hasan, M., Binti Marto, A., Hyodo, M., Bin Makhtar, A.M., 2011. The Strength of Soft Clay Reinforced with Singular and Group Bottom Ash Columns. Electronic Journal of Geotechnical Engineering, 16 N. 1215-1227. ISSN 1089-3032.
- 13. Frikha, W., Bouassida, M., Canou, J., 2014. Parametric Study of a Clayey Specimen Reinforced by a Granular Column. Int. J. Geomech., 10.1061/(ASCE) GM.1943-5622. 0000419, 04014078.
- 14. Cimentada, A., Da Costa, A., Cañizal, J., Sagaseta, C., 2011. Laboratory Study on Radial Consolidation and Deformation in Clay Reinforced with Stone Columns. Can Geotech J; 48(1), 36–52.
- 15. Brinkgreve, R.B.J., 2002. Plaxis Manual. Rotterdam, Balkema.