Production of ZnO- Graphene Nanocomposite by Sol-Gel Method and used as a Photocatalyst
Year 2018,
Volume: 33 Issue: 3, 207 - 216, 30.09.2018
Ömer Güler
,
Veyis Selen
,
Hasan Safa
Gülbeyi Dursun
Abstract
In this study, production and partial photocatalytic properties of the Graphene-ZnO composites were investigated. Graphene nano layers used as reinforcement element in the composite were produced via liquid phase exfoliation method. These nano layers were added during the sol-gel process to ensure homogeneous mixing of ZnO with the graphene. In some regions, graphene layers were observed to be surrounded by ZnO particles. Characterization of the synthesized graphene was carried out via transmission electron microscopy (TEM) and X-ray analysis. Photocatalytic degradation of the RR195 colorant was carried out by using ZnO-graphene composites. As a result, with increasing concentration of Graphene–ZnO composite in the environment, the color removal efficiency increased to 10.0 g/L Graphene–ZnO composition concentration. A similar propensity was observed for TOC removal. At the end of the photocatalytic reaction (90 min), in the environment using 10.0 g/L Graphene–ZnO composition, maximum color and TOC removal efficiencies were measured as 98.50% and 89.3%, respectively.
References
- 1. Guo, H.L., Wang, X.F., Qian, Q.Y., Wang,
F.B., Xia, X.H. 2009. A Green Approach to the
Synthesis of Graphene Nanosheets. Acs Nano,
3(9), 2653-2659.
- 2. Li, D., Muller, M.B., Gilje, S., Kaner, R.B.,
Wallace, G.G. 2008. Processable Aqueous
Dispersions of Graphene Nanosheets. Nature
Nanotechnology, 3(2), 101-105.
- 3. Xiang, Q.J., J.G. Yu, M. Jaroniec, 2012.
Graphene-based Semiconductor Photocatalysts.
Chemical Society Reviews, 41(2), 782-796.
- 4. Sun, Y.Q., Wu, Q.O., Shi, G.Q. 2011.
Graphene Based New Energy Materials.
Energy & Environmental Science, 4(4), 1113-
1132.
- 5. Stankovich, S., Dikin, D.A., Dommett, G.H.B.
Kohlhaas, K.M., Zimney, E.J., Stach, E.A.,
Piner, R.D., Nguyen, S.T., Ruoff, R.S. 2006.
Graphene-based Composite Materials. Nature,
442(7100), 282-286.
- 6. Wang, K., Ruan, J., Song, H., Zhang, J.L., Wo,
Y., Guo, S.W., Cui, D.X. 2011.
Biocompatibility of Graphene Oxide.
Nanoscale Research Letters, 6(8), 1-8.
- 7. Wang, Q., Guo, X.F., Cai, L.C., Cao, Y., Gan,
L., Liu, S., Wang, Z.X., Zhang, H.T., Li, L.D.
2011. TiO2-decorated Graphenes as Efficient
Photoswitches with High Oxygen Sensitivity.
Chemical Science, 2(9), 1860-1864.
- 8. Park, S., Mohanty, N., Suk, J.W., Nagaraja, A.,
An, J.H., Piner, R.D., Cai, W.W., Dreyer, D.R.,
Berry, V., Ruoff, R.S. 2010. Biocompatible,
Robust Free-Standing Paper Composed of a
TWEEN/Graphene Composite. Advanced
Materials, 22(15), 1736-1740.
- 9. Cai, W.B., Chen, X.Y. 2007. Nanoplatforms
for Targeted Molecular Imaging in Living
Subjects. Small, 3(11), 1840-1854.
- 10. Akhavan, O., Ghaderi, E., Esfandiar, A. 2011.
Wrapping Bacteria by Graphene Nanosheets
for Isolation from Environment, Reactivation
by Sonication, and Inactivation by Near-
Infrared Irradiation. Journal of Physical
Chemistry B, 115(19), 6279-6288.
- 11. Park, S., Ruoff, R.S. 2009. Chemical Methods
for the Production of Graphenes. Nature
Nanotechnology, 4(4), 217-224.
- 12. Reina, A., Jia, X.T., Ho, J., Nezich, D., Son,
H.B., Bulovic, V., Dresselhaus, M.S., Kong, J.
2009. Large Area, Few-Layer Graphene Films
on Arbitrary Substrates by Chemical Vapor
Deposition. Nano Letters, 9(1), 30-35.
- 13. Kosynkin, D.V., Higginbotham, A.L., Sinitskii,
A., Lomeda, J.R., Dimiev, A., Price, B.K.,
Tour, J.M. 2009. Longitudinal Unzipping of
Carbon Nanotubes to form Graphene
Nanoribbons. Nature, 458(7240), 872-875.
- 14. Schniepp, H.C., Li, J.L., McAllister, M.J., Sai,
H., Herrera-Alonso, M., Adamson, D.H.,
Prud'homme, R.K., Car, R., Saville, D.A.,
Aksay, I.A. 2006. Functionalized Single
Graphene Sheets Derived from Splitting
Graphite Oxide. Journal of Physical Chemistry
B, 110(17), 8535-8539.
- 15. Yang, Y., Ren, L.L., Zhang, C., Huang, S., Liu,
T.X. 2011. Facile Fabrication of Functionalized
Graphene Sheets (FGS)/ZnO Nanocomposites
with Photocatalytic Property. Acs Applied
Materials & Interfaces, 3(7), 2779-2785.
- 16. Wang, S., Goh, B.M., Manga, K.K., Bao, Q.L.,
Yang, P., Loh, K.P. 2010. Graphene as Atomic
Template and Structural Scaffold in the
Synthesis of Graphene-Organic Hybrid Wire
with Photovoltaic Properties. Acs Nano, 4(10),
6180-6186.
- 17. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W.,
Steiner, T. 2005. Recent Progress in Processing
and Properties of ZnO. Progress in Materials
Science, 50(3), 293-340.
- 18. Lee, K.R., Park, S., Lee, K.W. 2003. Rapid Ag
Recovery Using Photocatalytic ZnO
Nanopowders Prepared by Solutioncombustion
Method. Journal of Materials
Science Letters, 22(1), 65-67.
- 19. Chouhan, N., Ameta, R., Meena, R.K.,
Mandawat, N., Ghildiyal, R. 2016. Visible
Light Harvesting Pt/CdS/Co-doped ZnO
Nanorods Molecular Device for Hydrogen
Generation. International Journal of Hydrogen
Energy, 41(4), 2298-2306.
- 20. Wang, L., Ji, Z.Y., Lin, J.J., Li, P. 2017.
Preparation and Optical and Photocatalytic
Properties of Ce-doped ZnO Microstructures
by Simple Solution Method. Materials Science
in Semiconductor Processing, 71, 401-408.
- 21. Janotti, A., Van de Walle, C.G. 2009.
Fundamentals of Zinc Oxide as a
Semiconductor. Reports on Progress in
Physics, 72(12), 1-29.
- 22. Dou, S.M., Liu, Q.H., Wang, W.L., Liu, X.M.
2010. Highly Ordered Lattice Orientation of
ZnO Nanoparticles Formed in Confined Space.
Chinese Journal of Chemical Physics, 23(4),
484-490.
- 23. Guo, G., Guo, J., Tao, D., Choy, W.C.H.,
Zhao, L., Qian, W., Wang, Z. 2007. A Simple
Method to Prepare Multi-walled Carbon
Nanotube/ZnO Nanoparticle Composites.
Applied Physics a-Materials Science &
Processing, 89(2), 525-528.
- 24. Jiang, L.Q., Gao, L. 2005. Fabrication and
Characterization of ZnO-coated Multi-walled
Carbon Nanotubes with Enhanced
Photocatalytic Activity. Materials Chemistry
and Physics, 91(2-3), 313-316.
25. Zhang, N., Sun, J., Jiang, D.Y., Feng, T., Li, Q.
2009. Anchoring Zinc Oxide Quantum Dots on
Functionalized Multi-walled Carbon
Nanotubes by Covalent Coupling. Carbon,
47(5), 1214-1219.
- 26. Zhang, R.X., Fan, L.Z., Fang, Y.P., Yang, S.H.
2008. Electrochemical Route to the Preparation
of Highly Dispersed Composites of
ZnO/carbon Nanotubes with Significantly
Enhanced Electrochemiluminescence from ZnO. Journal of Materials Chemistry, 18(41),
4964-4970.
- 27. Zhu, L.P., Liao, G.H., Huang, W.Y., Ma, L.L.,
Yang, Y., Yu, Y., Fu, S.Y. 2009. Preparation,
Characterization and Photocatalytic Properties
of ZnO-coated Multi-walled Carbon
Nanotubes. Materials Science and Engineering
B-Advanced Functional Solid-State Materials,
163(3), 194-198.
- 28. Guler, O., Guler, S.H., Selen, V., Albayrak,
M.G., Evin, E. 2016. Production of Graphene
Layer by Liquid-phase Exfoliation with Low
Sonication Power and Sonication Time from
Synthesized Expanded Graphite. Fullerenes
Nanotubes and Carbon Nanostructures, 24(2),
123-127.
- 29. Kavitha, T., Gopalan, A.I., Lee, K.P., Park,
S.Y. 2012. Glucose Sensing, Photocatalytic
and Antibacterial Properties of Graphene-ZnO
Nanoparticle Hybrids. Carbon, 50(8),
2994-3000.
- 30. Dursun, A.Y., Tepe, O. 2011. Removal of
Chemazol Reactive Red 195 from Aqueous
Solution by Dehydrated Beet Pulp Carbon.
Journal of Hazardous Materials, 194, 303-311.
- 31. Kalantary, R.R., Shahamat, Y.D., Farzadkia,
M., Esrafili, A., Asgharnia, H. 2015.
Photocatalytic Degradation and Mineralization
of Diazinon in Aqueous Solution Using Nano-
TiO2(Degussa, P25): Kinetic and Statistical
Analysis. Desalination and Water Treatment,
55(2), 555-563.
- 32. Karaoglu, M.H., Ugurlu, M. 2010. Studies on
UV/NaOCl/TiO2/Sep Photocatalysed
Degradation of Reactive Red 195. Journal of
Hazardous Materials, 174(1-3), 864-871.
- 33. Rauf, M.A., Meetani, M.A., Hisaindee, S.
2011. An Overview on the Photocatalytic
Degradation of Azo Dyes in the Presence of
TiO2 Doped with Selective Transition Metals.
Desalination, 276(1-3), 13-27.
ZnO-Grafen Nanokompozitinin Sol-Jel Yöntemiyle Üretimi ve Fotokatalizör Olarak Kullanılması
Year 2018,
Volume: 33 Issue: 3, 207 - 216, 30.09.2018
Ömer Güler
,
Veyis Selen
,
Hasan Safa
Gülbeyi Dursun
Abstract
Bu çalışmada Grafen-ZnO kompozitinin üretimi ve kısmi fotokatalitik özellikleri incelenmiştir. Kompozitte takviye elemanı olarak kullanılan grafen nano tabakalar sıvı faz eksfolasyon yöntemi ile üretilmiştir. Elde edilen bu tabakalar Sol-Jel prosesi sırasında ilave edilerek ZnO ile grafenin homojen karışması sağlanmıştır. Hatta bazı bölgelerde grafenler ZnO partikülleri tarafından sarılmıştır. Sentezlenen grafenin karakterizasyonu geçirmeli elektron mikroskobu ve X-ışını analizleri ile yapılmıştır. Elde edilen kompozitin ise karakterizasyonu taramalı elektron mikroskobu ile yapılmıştır. Grafen-ZnO kompoziti kullanılarak RR195 boyarmaddenin fotokatalitik degradasyon yapılmıştır. Bunun sonucunda, ortamdaki Grafen-ZnO kompoziti konsantrasyonunun artışına paralel olarak renk giderim verimi 10,0 g/L Grafen-ZnO kompoziti konsantrasyonuna kadar artmıştır. Benzer eğilim TOC giderimi için de gözlemlenmiştir. Fotokatalitik reaksiyon süresi sonunda (90 dk) 10,0 g/L Grafen-ZnO kompoziti kullanılan ortamda maksimum renk ve TOC giderim verimleri sırasıyla %98,50 ve %89,3 olarak ölçülmüştür.
References
- 1. Guo, H.L., Wang, X.F., Qian, Q.Y., Wang,
F.B., Xia, X.H. 2009. A Green Approach to the
Synthesis of Graphene Nanosheets. Acs Nano,
3(9), 2653-2659.
- 2. Li, D., Muller, M.B., Gilje, S., Kaner, R.B.,
Wallace, G.G. 2008. Processable Aqueous
Dispersions of Graphene Nanosheets. Nature
Nanotechnology, 3(2), 101-105.
- 3. Xiang, Q.J., J.G. Yu, M. Jaroniec, 2012.
Graphene-based Semiconductor Photocatalysts.
Chemical Society Reviews, 41(2), 782-796.
- 4. Sun, Y.Q., Wu, Q.O., Shi, G.Q. 2011.
Graphene Based New Energy Materials.
Energy & Environmental Science, 4(4), 1113-
1132.
- 5. Stankovich, S., Dikin, D.A., Dommett, G.H.B.
Kohlhaas, K.M., Zimney, E.J., Stach, E.A.,
Piner, R.D., Nguyen, S.T., Ruoff, R.S. 2006.
Graphene-based Composite Materials. Nature,
442(7100), 282-286.
- 6. Wang, K., Ruan, J., Song, H., Zhang, J.L., Wo,
Y., Guo, S.W., Cui, D.X. 2011.
Biocompatibility of Graphene Oxide.
Nanoscale Research Letters, 6(8), 1-8.
- 7. Wang, Q., Guo, X.F., Cai, L.C., Cao, Y., Gan,
L., Liu, S., Wang, Z.X., Zhang, H.T., Li, L.D.
2011. TiO2-decorated Graphenes as Efficient
Photoswitches with High Oxygen Sensitivity.
Chemical Science, 2(9), 1860-1864.
- 8. Park, S., Mohanty, N., Suk, J.W., Nagaraja, A.,
An, J.H., Piner, R.D., Cai, W.W., Dreyer, D.R.,
Berry, V., Ruoff, R.S. 2010. Biocompatible,
Robust Free-Standing Paper Composed of a
TWEEN/Graphene Composite. Advanced
Materials, 22(15), 1736-1740.
- 9. Cai, W.B., Chen, X.Y. 2007. Nanoplatforms
for Targeted Molecular Imaging in Living
Subjects. Small, 3(11), 1840-1854.
- 10. Akhavan, O., Ghaderi, E., Esfandiar, A. 2011.
Wrapping Bacteria by Graphene Nanosheets
for Isolation from Environment, Reactivation
by Sonication, and Inactivation by Near-
Infrared Irradiation. Journal of Physical
Chemistry B, 115(19), 6279-6288.
- 11. Park, S., Ruoff, R.S. 2009. Chemical Methods
for the Production of Graphenes. Nature
Nanotechnology, 4(4), 217-224.
- 12. Reina, A., Jia, X.T., Ho, J., Nezich, D., Son,
H.B., Bulovic, V., Dresselhaus, M.S., Kong, J.
2009. Large Area, Few-Layer Graphene Films
on Arbitrary Substrates by Chemical Vapor
Deposition. Nano Letters, 9(1), 30-35.
- 13. Kosynkin, D.V., Higginbotham, A.L., Sinitskii,
A., Lomeda, J.R., Dimiev, A., Price, B.K.,
Tour, J.M. 2009. Longitudinal Unzipping of
Carbon Nanotubes to form Graphene
Nanoribbons. Nature, 458(7240), 872-875.
- 14. Schniepp, H.C., Li, J.L., McAllister, M.J., Sai,
H., Herrera-Alonso, M., Adamson, D.H.,
Prud'homme, R.K., Car, R., Saville, D.A.,
Aksay, I.A. 2006. Functionalized Single
Graphene Sheets Derived from Splitting
Graphite Oxide. Journal of Physical Chemistry
B, 110(17), 8535-8539.
- 15. Yang, Y., Ren, L.L., Zhang, C., Huang, S., Liu,
T.X. 2011. Facile Fabrication of Functionalized
Graphene Sheets (FGS)/ZnO Nanocomposites
with Photocatalytic Property. Acs Applied
Materials & Interfaces, 3(7), 2779-2785.
- 16. Wang, S., Goh, B.M., Manga, K.K., Bao, Q.L.,
Yang, P., Loh, K.P. 2010. Graphene as Atomic
Template and Structural Scaffold in the
Synthesis of Graphene-Organic Hybrid Wire
with Photovoltaic Properties. Acs Nano, 4(10),
6180-6186.
- 17. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W.,
Steiner, T. 2005. Recent Progress in Processing
and Properties of ZnO. Progress in Materials
Science, 50(3), 293-340.
- 18. Lee, K.R., Park, S., Lee, K.W. 2003. Rapid Ag
Recovery Using Photocatalytic ZnO
Nanopowders Prepared by Solutioncombustion
Method. Journal of Materials
Science Letters, 22(1), 65-67.
- 19. Chouhan, N., Ameta, R., Meena, R.K.,
Mandawat, N., Ghildiyal, R. 2016. Visible
Light Harvesting Pt/CdS/Co-doped ZnO
Nanorods Molecular Device for Hydrogen
Generation. International Journal of Hydrogen
Energy, 41(4), 2298-2306.
- 20. Wang, L., Ji, Z.Y., Lin, J.J., Li, P. 2017.
Preparation and Optical and Photocatalytic
Properties of Ce-doped ZnO Microstructures
by Simple Solution Method. Materials Science
in Semiconductor Processing, 71, 401-408.
- 21. Janotti, A., Van de Walle, C.G. 2009.
Fundamentals of Zinc Oxide as a
Semiconductor. Reports on Progress in
Physics, 72(12), 1-29.
- 22. Dou, S.M., Liu, Q.H., Wang, W.L., Liu, X.M.
2010. Highly Ordered Lattice Orientation of
ZnO Nanoparticles Formed in Confined Space.
Chinese Journal of Chemical Physics, 23(4),
484-490.
- 23. Guo, G., Guo, J., Tao, D., Choy, W.C.H.,
Zhao, L., Qian, W., Wang, Z. 2007. A Simple
Method to Prepare Multi-walled Carbon
Nanotube/ZnO Nanoparticle Composites.
Applied Physics a-Materials Science &
Processing, 89(2), 525-528.
- 24. Jiang, L.Q., Gao, L. 2005. Fabrication and
Characterization of ZnO-coated Multi-walled
Carbon Nanotubes with Enhanced
Photocatalytic Activity. Materials Chemistry
and Physics, 91(2-3), 313-316.
25. Zhang, N., Sun, J., Jiang, D.Y., Feng, T., Li, Q.
2009. Anchoring Zinc Oxide Quantum Dots on
Functionalized Multi-walled Carbon
Nanotubes by Covalent Coupling. Carbon,
47(5), 1214-1219.
- 26. Zhang, R.X., Fan, L.Z., Fang, Y.P., Yang, S.H.
2008. Electrochemical Route to the Preparation
of Highly Dispersed Composites of
ZnO/carbon Nanotubes with Significantly
Enhanced Electrochemiluminescence from ZnO. Journal of Materials Chemistry, 18(41),
4964-4970.
- 27. Zhu, L.P., Liao, G.H., Huang, W.Y., Ma, L.L.,
Yang, Y., Yu, Y., Fu, S.Y. 2009. Preparation,
Characterization and Photocatalytic Properties
of ZnO-coated Multi-walled Carbon
Nanotubes. Materials Science and Engineering
B-Advanced Functional Solid-State Materials,
163(3), 194-198.
- 28. Guler, O., Guler, S.H., Selen, V., Albayrak,
M.G., Evin, E. 2016. Production of Graphene
Layer by Liquid-phase Exfoliation with Low
Sonication Power and Sonication Time from
Synthesized Expanded Graphite. Fullerenes
Nanotubes and Carbon Nanostructures, 24(2),
123-127.
- 29. Kavitha, T., Gopalan, A.I., Lee, K.P., Park,
S.Y. 2012. Glucose Sensing, Photocatalytic
and Antibacterial Properties of Graphene-ZnO
Nanoparticle Hybrids. Carbon, 50(8),
2994-3000.
- 30. Dursun, A.Y., Tepe, O. 2011. Removal of
Chemazol Reactive Red 195 from Aqueous
Solution by Dehydrated Beet Pulp Carbon.
Journal of Hazardous Materials, 194, 303-311.
- 31. Kalantary, R.R., Shahamat, Y.D., Farzadkia,
M., Esrafili, A., Asgharnia, H. 2015.
Photocatalytic Degradation and Mineralization
of Diazinon in Aqueous Solution Using Nano-
TiO2(Degussa, P25): Kinetic and Statistical
Analysis. Desalination and Water Treatment,
55(2), 555-563.
- 32. Karaoglu, M.H., Ugurlu, M. 2010. Studies on
UV/NaOCl/TiO2/Sep Photocatalysed
Degradation of Reactive Red 195. Journal of
Hazardous Materials, 174(1-3), 864-871.
- 33. Rauf, M.A., Meetani, M.A., Hisaindee, S.
2011. An Overview on the Photocatalytic
Degradation of Azo Dyes in the Presence of
TiO2 Doped with Selective Transition Metals.
Desalination, 276(1-3), 13-27.