Research Article
BibTex RIS Cite

Ultra Geniş Bantlı Haberleşme Sistemleri için Çentikli Yuvarlatılmış Kelebek Anten Tasarımı

Year 2019, Volume: 34 Issue: 4, 85 - 90, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.702079

Abstract

Bu çalışmada, Ultra-Geniş Bant haberleşme sistemleri için modifiye edilmiş kelebek anten yapısı önerilmiştir. Bu anten kelebek antenin kollarının yuvarlatılması ve çentik atılması ile oluşturulmuştur. Tasarlanan yapının anten parametreleri, Federal İletişim Komisyonu tarafından belirlenen kısıtlamalara göre incelenmiştir. Böylece, Geri Dönüş Kaybı (S11), Duran Dalga Oranı (VSWR), kazanç, ışıma örüntüsü ve anten empedansı 3,1 GHz -10,6 GHz frekans aralığında gözlenmiştir. Ayrıca, anten kol uzunluğunun ve dielektrik malzemenin anten performansına etkisi aynı frekans aralığında yorumlanmıştır. Elde edilen sonuçlara göre, önerilen yapı Ultra-Geniş Bant sistemleri için bant genişliği gereksinimlerini karşılamaktadır. Kazanç ve empedans değişimleri de Ultra-Geniş Bant uygulamaları için kabul edilebilir sınırlardadır. Önerilen anten CST Microwave Studio programı ile analiz edilmiştir.

References

  • 1. Federal Communications Commission (FCC), First Report and Order in The Matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. ET-Docket 98-153, FCC 02-48, released April 2002.
  • 2. Sayidmarie, K.H., Fadhel, Y.A., 2013. A Planar Self-Complementary Bow-Tie Antenna for UWB Applications. Progress in Electromagnetics Research C, 35, 253-267.
  • 3. Sharma, C., Rana, S.B., Singh, H., 2015. Design and Analysis of Modified Bowtie Antenna. International Journal of Technology Enhancements and Emerging Engineering Research, 3, 119-121.
  • 4. George, D. M., Rajan, R., 2015. Design and Analysis of Different Bow-Tie Configurations for Submarines. International Journal of Innovative Research in Computer and Communication Engineering, 3(9), 8590-8596.
  • 5. Çolak, Ş., Gençoğlan, D.N., 2016.Improvement of Bowtie Antenna Parameters for Ultra-Wide Band Applications. 24th Signal Processing and Communication Application Conference (SIU), 1797-1800.
  • 6. Gonzάles, F., Boreman, G., 2005. Comparison of Dipole, Bowtie, Spiral and Log-Periodic IR Antennas. Infrared Physics & Technology, 46(5), 418-428.
  • 7. Wiesbeck, W., Adamiuk, G., Sturn, C., 2009. Basic Properties and Design Principles of UWB Antennas. Proceedings of IEEE, 97(2), 372-385.
  • 8. Dao, T.D., Hoang, C.V., Nishio, N., Yamamoto, N., Ohi, A., Nabatame, T., Aono, M., Nagao, T., 2019. Dark-Field Scattering and Local SERS Mapping from Plasmonic Aluminum Bowtie Antenna Array. Micromachines, 10(7), 468.
  • 9. Jeong, S.H., Tassoudji, M.A., Mohammadian, A., Sanchez, J.F., Taesik, Y.A.N.G., 2019. Multilayer bowtie antenna structure. U.S. Patent Application No. 16/163, 310.
  • 10. Kumar, R., Tripathy, M.R., Ronnow, D., 2019. An Approach to Improve Gain and Bandwidth in Bowtie Antenna Using Frequency Selective Surface. Smart Innovations in Communication and Computational Sciences, 219-227.
  • 11. Ryecroft, S., Shaw, A., Fergus, P., Kot, P., Hashim, K., Moody, A., Conway, L., 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. Sensors, 19(8), 1813.
  • 12. Alibakhshikenari, M., Moghaddam, S.M., Zaman, A.U., Yang, J., Virdee, B.S., Limiti, E., 2019. Wideband Sub-6 GHz Self-Grounded Bow-Tie Antenna with New Feeding Mechanism for 5G Communication Systems. 13th European Conference on Antennas and Propagation, 1-4.
  • 13. Jiang, H., Si, L. M., Hu, W., Lv, X., 2019. A Symmetrical Dual-Beam Bowtie Antenna with Gain Enhancement Using Metamaterial for 5G MIMO Applications. IEEE Photonics Journal, 11(1), 1-9.
  • 14. Dayo, Z.A., Cao, Q., Soothar, P., Lodro, M. M., Li, Y., 2019. A Compact Coplanar Waveguide Feed Bow-Tie Slot Antenna for WIMAX, C and X Band Applications. IEEE International Conference on Computational Electromagnetics, 1-3.

Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems

Year 2019, Volume: 34 Issue: 4, 85 - 90, 31.12.2019
https://doi.org/10.21605/cukurovaummfd.702079

Abstract

In this paper, a modified bowtie antenna structure is proposed for Ultra-Wideband communication systems. This antenna is obtained by rounding and notching the edges of antenna arms. Antenna parameters for the designed structure are examined according to the restrictions specified by Federal Communications Commission. Thus, Return Loss (S11), Voltage Standing Wave Ratio (VSWR), gain, radiation pattern and impedance are observed in the 3.1 GHz - 10.6 GHz frequency range. Additionally, the effect of arm length and dielectric material on antenna performance are interpreted in the same range.According to obtained results, the proposed structure satisfies the bandwidth requirements for Ultra-Wideband systems. Gain and impedance variations are also in acceptable limits for Ultra-Wideband applications. The proposed antenna is analyzed through CST Microwave Studio program.

References

  • 1. Federal Communications Commission (FCC), First Report and Order in The Matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. ET-Docket 98-153, FCC 02-48, released April 2002.
  • 2. Sayidmarie, K.H., Fadhel, Y.A., 2013. A Planar Self-Complementary Bow-Tie Antenna for UWB Applications. Progress in Electromagnetics Research C, 35, 253-267.
  • 3. Sharma, C., Rana, S.B., Singh, H., 2015. Design and Analysis of Modified Bowtie Antenna. International Journal of Technology Enhancements and Emerging Engineering Research, 3, 119-121.
  • 4. George, D. M., Rajan, R., 2015. Design and Analysis of Different Bow-Tie Configurations for Submarines. International Journal of Innovative Research in Computer and Communication Engineering, 3(9), 8590-8596.
  • 5. Çolak, Ş., Gençoğlan, D.N., 2016.Improvement of Bowtie Antenna Parameters for Ultra-Wide Band Applications. 24th Signal Processing and Communication Application Conference (SIU), 1797-1800.
  • 6. Gonzάles, F., Boreman, G., 2005. Comparison of Dipole, Bowtie, Spiral and Log-Periodic IR Antennas. Infrared Physics & Technology, 46(5), 418-428.
  • 7. Wiesbeck, W., Adamiuk, G., Sturn, C., 2009. Basic Properties and Design Principles of UWB Antennas. Proceedings of IEEE, 97(2), 372-385.
  • 8. Dao, T.D., Hoang, C.V., Nishio, N., Yamamoto, N., Ohi, A., Nabatame, T., Aono, M., Nagao, T., 2019. Dark-Field Scattering and Local SERS Mapping from Plasmonic Aluminum Bowtie Antenna Array. Micromachines, 10(7), 468.
  • 9. Jeong, S.H., Tassoudji, M.A., Mohammadian, A., Sanchez, J.F., Taesik, Y.A.N.G., 2019. Multilayer bowtie antenna structure. U.S. Patent Application No. 16/163, 310.
  • 10. Kumar, R., Tripathy, M.R., Ronnow, D., 2019. An Approach to Improve Gain and Bandwidth in Bowtie Antenna Using Frequency Selective Surface. Smart Innovations in Communication and Computational Sciences, 219-227.
  • 11. Ryecroft, S., Shaw, A., Fergus, P., Kot, P., Hashim, K., Moody, A., Conway, L., 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. Sensors, 19(8), 1813.
  • 12. Alibakhshikenari, M., Moghaddam, S.M., Zaman, A.U., Yang, J., Virdee, B.S., Limiti, E., 2019. Wideband Sub-6 GHz Self-Grounded Bow-Tie Antenna with New Feeding Mechanism for 5G Communication Systems. 13th European Conference on Antennas and Propagation, 1-4.
  • 13. Jiang, H., Si, L. M., Hu, W., Lv, X., 2019. A Symmetrical Dual-Beam Bowtie Antenna with Gain Enhancement Using Metamaterial for 5G MIMO Applications. IEEE Photonics Journal, 11(1), 1-9.
  • 14. Dayo, Z.A., Cao, Q., Soothar, P., Lodro, M. M., Li, Y., 2019. A Compact Coplanar Waveguide Feed Bow-Tie Slot Antenna for WIMAX, C and X Band Applications. IEEE International Conference on Computational Electromagnetics, 1-3.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Duygu Nazan Gençoğlan

Şule Çolak This is me

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 34 Issue: 4

Cite

APA Gençoğlan, D. N., & Çolak, Ş. (2019). Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4), 85-90. https://doi.org/10.21605/cukurovaummfd.702079
AMA Gençoğlan DN, Çolak Ş. Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems. cukurovaummfd. December 2019;34(4):85-90. doi:10.21605/cukurovaummfd.702079
Chicago Gençoğlan, Duygu Nazan, and Şule Çolak. “Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, no. 4 (December 2019): 85-90. https://doi.org/10.21605/cukurovaummfd.702079.
EndNote Gençoğlan DN, Çolak Ş (December 1, 2019) Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 4 85–90.
IEEE D. N. Gençoğlan and Ş. Çolak, “Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems”, cukurovaummfd, vol. 34, no. 4, pp. 85–90, 2019, doi: 10.21605/cukurovaummfd.702079.
ISNAD Gençoğlan, Duygu Nazan - Çolak, Şule. “Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/4 (December 2019), 85-90. https://doi.org/10.21605/cukurovaummfd.702079.
JAMA Gençoğlan DN, Çolak Ş. Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems. cukurovaummfd. 2019;34:85–90.
MLA Gençoğlan, Duygu Nazan and Şule Çolak. “Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 34, no. 4, 2019, pp. 85-90, doi:10.21605/cukurovaummfd.702079.
Vancouver Gençoğlan DN, Çolak Ş. Design of Notched Rounded Bowtie Antenna for Ultra-Wideband Communication Systems. cukurovaummfd. 2019;34(4):85-90.