Research Article
BibTex RIS Cite

Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs

Year 2020, Volume: 35 Issue: 4, 925 - 936, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.868756

Abstract

In the present study, the effect of the multi-walled carbon nanotubes (MWCNTs) fillers weight fraction on the mechanical, electrical, and thermal properties of the epoxy was calculated analytically. The results were then compared and it was found out that the MWCNTS has a significant effect on the electrical conductivity of the epoxy. The MWCNT modified epoxy composites were considered as the matrix material to design quasi-isotropic carbon fibre/epoxy composite. The change of the weight fraction of the MWCNTs on the mechanical, electrical, and thermal properties of the carbon fibre/epoxy laminates was also calculated. Finally, the hygrothermal load and the bending load response of the laminated composites were researched. MWCNTs fix the mismatch between the hygrothermal properties of the epoxy matrix and the carbon fiber.

References

  • 1. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K., 2005. Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre- Reinforced Composites, Compos. Part A Appl. Sci. Manuf., 36, 1525–1535. doi:10.1016/j. compositesa.2005.02.007.
  • 2. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., 2006. Glass-fibre-reinforced Composites with Enhanced Mechanical and Electrical Properties -Benefits and Limitations of a Nanoparticle Modified Matrix, Eng. Fract. Mech., 73(16), 2346–2359. doi:10.1016/j.engfracmech.2006. 05.015.
  • 3. Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X., Fong, H., 2011. Hybrid Multi-scale Epoxy Composite Made of Conventional Carbon Fiber Fabrics with Interlaminar Regions Containing Electrospun Carbon Nanofiber Mats, Compos. Part A, 42, 2036–2042. doi:10.1016/j.compositesa.2011. 09.010.
  • 4. Ashrafi, B., Díez-Pascual, A.M., Johnson, L., Genest, M., Hind, S., Martinez-Rubi, Y., González-Domínguez, J.M., Martínez, M.T., Simard, B., Gómez-Fatou, M.A., Johnston, A., 2012. Processing and Properties of PEEK/ Glass Fiber Laminates: Effect of Addition of Single-Walled Carbon Nanotubes. Compos. Part A, 43, 1267–1279. doi:10.1016/j. compositesa.2012.02.022.
  • 5. Ashrafi, B., Naffakh, M., Di, A.M., Gonza, M., Johnston, A., Simard, B., Martínez, M.T., Gómez-Fatou, M.A., 2011. Influence of Carbon Nanotubes on the Thermal, Electrical and Mechanical Properties of Poly (Ether Ether Ketone)/Glass Fiber Laminates, Carbon, 49(8), 2817-2833. doi:10.1016/j.carbon.2011.03.011.
  • 6. da Costa, E.F.R., Skordos, A.A., Partridge, I.K., Rezai, A., 2012. RTM Processing and Electrical Performance of Carbon Nanotube Modified Epoxy/fibre Composites, Compos. Part A Appl. Sci. Manuf., 43, 593–602. doi:10.1016/j.compositesa.2011.12.019.
  • 7. Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., Pötschke, P., 2011. Melt Mixed Nano Composites of PA12 with MWNTs: Influence of MWNT and Matrix Properties on Macrodispersion and Electrical Properties. Compos. Sci. Technol., 71, 306–314. doi:10.1016/j.compscitech.2010.11. 015.
  • 8. Han, S., Meng, Q., Araby, S., Liu, T., Demiral, M., 2019. Mechanical and Electrical Properties of Graphene and Carbon Nanotube Reinforced Epoxy Adhesives: Experimental and Numerical Analysis. Compos. Part A Appl. Sci. Manuf., 120, 116–126. doi:10.1016/j.compositesa.2019. 02.027.
  • 9. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., 2010. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A Appl. Sci. Manuf., 41, 1345–1367. doi:10.1016/j.compositesa.2010.07.003.
  • 10. Eskizeybek, V., Avci, A., Gülce, A., 2014. The Mode I Interlaminar Fracture Toughness of Chemically Carbon Nanotube Grafted Glass Fabric/epoxy Multi-scale Composite Structures, Compos. Part A Appl. Sci. Manuf., 63, 94–102. doi:10.1016/j.compositesa.2014. 04.013.
  • 11. Ghislandi, M., de A. Prado, L.A.S., Barros- Timmons, K.S.A., 2013. Effect of Filler Functionalization on Thermo-mechanical Properties of Polyamide-12/Carbon Nanofibers Composites: A Study of Filler–Matrix Molecular Interactions, J. Mater. Sci., 48, 8427–8437. doi:10.1007/s10853-013-7655-4.
  • 12. Zhu, Y., Bakis, C.E., Adair, J.H., 2012. Effects of Carbon Nanofiller Functionalization and Distribution on Interlaminar Fracture Toughness of Multi-scale Reinforced Polymer Composites, Carbon, 50(3), 1316–1331. doi:10.1016/j.carbon.2011.11.001.
  • 13. Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J., Xue, F., 2008. Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced with Amino- functionalized Multi-walled Carbon Nanotubes Mater. Sci. Eng. A, 492, 236–242. doi:10.1016/j.msea.2008.04.044.
  • 14. Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., Yoon, H.G., 2005. Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/epoxy Composites, Carbon, 43, 23–30. doi:10.1016/j.carbon.2004.08.015.
  • 15. Sagar, R., Petrova, R.S., Somenath, M., 2018. Effect of Carbon Nanotube (CNT) Functionalization in Epoxy-CNT Composites, Nanotechnol. Rev., 7, 475–485. doi:10.1016/j.physbeh.2017.03.040.
  • 16. Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H., 2006. Thermal and Electrical Conductivity of Single- and Multi-walled Carbon Nanotube-epoxy Composites, Compos. Sci. Technol., 66, 1285–1288. doi:10.1016/j. compscitech.2005.10.016.
  • 17. Jarali, C.S., Patil, S.F., Pilli, S.C., 2015. Hygro- thermo-electric Properties of Carbon Nanotube Epoxy Nanocomposites with Agglomeration Effects, Mech. Adv. Mater. Struct., 22, 428–439. doi:10.1080/15376494.2013.769654.
  • 18. Zhang, Y.C., Wang, X., 2006. Hygrothermal Effects on Interfacial Stress Transfer Characteristics of Carbon, J. Reinf. Plast. Compos., 25(1), 71-88. doi:10.1177/07316844 06055456.
  • 19. Antunes, R.A., de Oliviera, M.C.L., Ett, G., Ett, V., 2011. Carbon Materials in Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: A Review of the Main Challenges to Improve Electrical Performance, J. Power Sources, 196, 2945-2961. doi.org/10.1016/j.jpowsour.2010.12.041.
  • 20. Bairan, A., Selamat, M.Z., Sahadan, S.N., Malingam, S., Mohamad, N., 2018. Effect of CNTs on the Electrical and Mechanical Properties of Polymeric Composite as PEM Fuel Cell Bipolar Plate, J. Teknol. Sci. Eng., 80(6), 115-122.
  • 21. Yao, K., Adams, D., Hao, A., Zheng, J.P., Liang, Z., Nguyen, N., 2017. Highly Conductive and Strong Graphite-Phenolic Resin Composite for Bipolar Plate Applications, Energy Fuels, 31, 14320-14331. doi:10.1021/acs.energyfuels.7b02678.
  • 22. Lee, H.E., Chung, Y.S., Kim, S.S., 2017. Feasibility Study on Carbon-Felt-Reinforced Thermoplastic Composite Materials for PEMFC Bipolar Plates, Compos. Struct., 180, 378-385. doi.org/10.1016/j.compstruct.2017. 08.037.
  • 23. Bairan, K.A., Selamat, M.Z., Sahadan, S.N., Malingam, S.D., Mohamad, N., 2016. Effect of Carbon Nanotubes Loading in Multifiller Polymer Composite as Bipolar Plate for PEM Fuel Cell, Proced. Chem., 19, 91-97. doi:10.1016/j.proche.2016.03.120.
  • 24. Chaiwan, P., Pumchusak, J., 2015. Wet vs. Dry Dispersion Methods for Multiwall Carbon Nanotubes in the High Graphite Content Phenolic Resin Composites for use as Bipolar Plate Application, Electrochim. Acta, 158, 1-6. doi.org/10.1016/j.electacta.2015.01.101.
  • 25. Suherman, H., Sulong, A.B., Sahari, J., 2013. Effect of Compression Molding Parameters on the In-Plane and Through-Plane Conductivity of Carbon Nanotubes/Graphite/Epoxy Nanocomposites as Bipolar Plate Material for a Polymer Electrolyte Membrane Fuel Cell, Ceram. Int., 39, 1277-1284. doi.org/10.1016/j. ceramint.2012.07.059.
  • 26. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M., Yang, C.H., Tsai, M.C., Yen, M.Y., Hsiao, M.C., Lee, S.J., Xie, X.F., Hsiao, Y.H., 2008. Preparation and Properties of Carbon Nanotube/Polypropylene Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells, J. Power Sources, 185, 1225-1232. doi:10.1016/j.jpowsour.2008.06. 097.
  • 27. Davé, R., Gupta, R., Pfeffer, R., Sundaresan, ,S., Tomassone, M.S., 2006. Deagglomeration and Mixing of Nanoparticles, NSF Nanoscale Science and Engineering Grantees Conference, Grant#: 0506722, 2006, Dec 4-6.
  • 28. Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., Simard, B., Kingston, C.T., Bourne, O., Johnston, A., 2011. Enhancement of Mechanical Performance of Epoxy/carbon Fiber Laminate Composites Using Single-walled Carbon Nanotubes, Compos. Sci. Technol., 71, 1569–1578. doi:10.1016/j.compscitech.2011.06.015.
  • 29. Mirjalili, V., Ramachandramoorthy, R., Hubert, P., 2014. Enhancement of Fracture Toughness of Carbon Fiber Laminated Composites Using Multi Wall Carbon Nanotubes. Carbon, 79, 413–423. doi:10.1016/j.carbon.2014.07.084.
  • 30. Jones, M.R., 1999. Mechanics of Composite Materials, 2nd Ed., Taylor & Francis, Inc. PA, 19106.

Karbon Nanotüp ile Modifiye Edilmiş Fiber Takviyeli Laminelerin Isıl ve Elektriksel Özelliklerinin Teorik Analizi

Year 2020, Volume: 35 Issue: 4, 925 - 936, 31.12.2020
https://doi.org/10.21605/cukurovaummfd.868756

Abstract

Bu çalışmada, çoğul duvarlı karbon nanotüplerin (MWCNT) epoksinin mekanik, elektrik ve ısıl özellikleri üzerindeki etkisi analitik olarak hesaplanmıştır. MWCNT’nin epoksinin elektriksel iletkenliği üzerinde önemli bir etkiye sahip olduğu bulunmuştur. MWCNT modifiyeli epoksi malzeme ile karbon fiber/epoksi tabakalı kompozit malzemeler tasarlanmıştır. MWCNT’lerin ağırlıkça katkısının karbon fiber/epoksi kompozitlerin mekanik, elektriksel ve termal özellikleri üzerindeki etkisi de hesaplanmıştır. Son olarak, MWCNT takviyeli tabakalı kompozitlerin higrotermal yük ve eğilme yükü altındaki tepkileri araştırılmıştır. MWCNT’lerin, epoksi matris ve karbon fiberin ısı ve neme bağlı özellikleri arasındaki uyumsuzluğu azalttığı sonucuna varılmıştır.

References

  • 1. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K., 2005. Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre- Reinforced Composites, Compos. Part A Appl. Sci. Manuf., 36, 1525–1535. doi:10.1016/j. compositesa.2005.02.007.
  • 2. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., 2006. Glass-fibre-reinforced Composites with Enhanced Mechanical and Electrical Properties -Benefits and Limitations of a Nanoparticle Modified Matrix, Eng. Fract. Mech., 73(16), 2346–2359. doi:10.1016/j.engfracmech.2006. 05.015.
  • 3. Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X., Fong, H., 2011. Hybrid Multi-scale Epoxy Composite Made of Conventional Carbon Fiber Fabrics with Interlaminar Regions Containing Electrospun Carbon Nanofiber Mats, Compos. Part A, 42, 2036–2042. doi:10.1016/j.compositesa.2011. 09.010.
  • 4. Ashrafi, B., Díez-Pascual, A.M., Johnson, L., Genest, M., Hind, S., Martinez-Rubi, Y., González-Domínguez, J.M., Martínez, M.T., Simard, B., Gómez-Fatou, M.A., Johnston, A., 2012. Processing and Properties of PEEK/ Glass Fiber Laminates: Effect of Addition of Single-Walled Carbon Nanotubes. Compos. Part A, 43, 1267–1279. doi:10.1016/j. compositesa.2012.02.022.
  • 5. Ashrafi, B., Naffakh, M., Di, A.M., Gonza, M., Johnston, A., Simard, B., Martínez, M.T., Gómez-Fatou, M.A., 2011. Influence of Carbon Nanotubes on the Thermal, Electrical and Mechanical Properties of Poly (Ether Ether Ketone)/Glass Fiber Laminates, Carbon, 49(8), 2817-2833. doi:10.1016/j.carbon.2011.03.011.
  • 6. da Costa, E.F.R., Skordos, A.A., Partridge, I.K., Rezai, A., 2012. RTM Processing and Electrical Performance of Carbon Nanotube Modified Epoxy/fibre Composites, Compos. Part A Appl. Sci. Manuf., 43, 593–602. doi:10.1016/j.compositesa.2011.12.019.
  • 7. Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., Pötschke, P., 2011. Melt Mixed Nano Composites of PA12 with MWNTs: Influence of MWNT and Matrix Properties on Macrodispersion and Electrical Properties. Compos. Sci. Technol., 71, 306–314. doi:10.1016/j.compscitech.2010.11. 015.
  • 8. Han, S., Meng, Q., Araby, S., Liu, T., Demiral, M., 2019. Mechanical and Electrical Properties of Graphene and Carbon Nanotube Reinforced Epoxy Adhesives: Experimental and Numerical Analysis. Compos. Part A Appl. Sci. Manuf., 120, 116–126. doi:10.1016/j.compositesa.2019. 02.027.
  • 9. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., 2010. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A Appl. Sci. Manuf., 41, 1345–1367. doi:10.1016/j.compositesa.2010.07.003.
  • 10. Eskizeybek, V., Avci, A., Gülce, A., 2014. The Mode I Interlaminar Fracture Toughness of Chemically Carbon Nanotube Grafted Glass Fabric/epoxy Multi-scale Composite Structures, Compos. Part A Appl. Sci. Manuf., 63, 94–102. doi:10.1016/j.compositesa.2014. 04.013.
  • 11. Ghislandi, M., de A. Prado, L.A.S., Barros- Timmons, K.S.A., 2013. Effect of Filler Functionalization on Thermo-mechanical Properties of Polyamide-12/Carbon Nanofibers Composites: A Study of Filler–Matrix Molecular Interactions, J. Mater. Sci., 48, 8427–8437. doi:10.1007/s10853-013-7655-4.
  • 12. Zhu, Y., Bakis, C.E., Adair, J.H., 2012. Effects of Carbon Nanofiller Functionalization and Distribution on Interlaminar Fracture Toughness of Multi-scale Reinforced Polymer Composites, Carbon, 50(3), 1316–1331. doi:10.1016/j.carbon.2011.11.001.
  • 13. Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J., Xue, F., 2008. Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced with Amino- functionalized Multi-walled Carbon Nanotubes Mater. Sci. Eng. A, 492, 236–242. doi:10.1016/j.msea.2008.04.044.
  • 14. Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., Yoon, H.G., 2005. Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/epoxy Composites, Carbon, 43, 23–30. doi:10.1016/j.carbon.2004.08.015.
  • 15. Sagar, R., Petrova, R.S., Somenath, M., 2018. Effect of Carbon Nanotube (CNT) Functionalization in Epoxy-CNT Composites, Nanotechnol. Rev., 7, 475–485. doi:10.1016/j.physbeh.2017.03.040.
  • 16. Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H., 2006. Thermal and Electrical Conductivity of Single- and Multi-walled Carbon Nanotube-epoxy Composites, Compos. Sci. Technol., 66, 1285–1288. doi:10.1016/j. compscitech.2005.10.016.
  • 17. Jarali, C.S., Patil, S.F., Pilli, S.C., 2015. Hygro- thermo-electric Properties of Carbon Nanotube Epoxy Nanocomposites with Agglomeration Effects, Mech. Adv. Mater. Struct., 22, 428–439. doi:10.1080/15376494.2013.769654.
  • 18. Zhang, Y.C., Wang, X., 2006. Hygrothermal Effects on Interfacial Stress Transfer Characteristics of Carbon, J. Reinf. Plast. Compos., 25(1), 71-88. doi:10.1177/07316844 06055456.
  • 19. Antunes, R.A., de Oliviera, M.C.L., Ett, G., Ett, V., 2011. Carbon Materials in Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: A Review of the Main Challenges to Improve Electrical Performance, J. Power Sources, 196, 2945-2961. doi.org/10.1016/j.jpowsour.2010.12.041.
  • 20. Bairan, A., Selamat, M.Z., Sahadan, S.N., Malingam, S., Mohamad, N., 2018. Effect of CNTs on the Electrical and Mechanical Properties of Polymeric Composite as PEM Fuel Cell Bipolar Plate, J. Teknol. Sci. Eng., 80(6), 115-122.
  • 21. Yao, K., Adams, D., Hao, A., Zheng, J.P., Liang, Z., Nguyen, N., 2017. Highly Conductive and Strong Graphite-Phenolic Resin Composite for Bipolar Plate Applications, Energy Fuels, 31, 14320-14331. doi:10.1021/acs.energyfuels.7b02678.
  • 22. Lee, H.E., Chung, Y.S., Kim, S.S., 2017. Feasibility Study on Carbon-Felt-Reinforced Thermoplastic Composite Materials for PEMFC Bipolar Plates, Compos. Struct., 180, 378-385. doi.org/10.1016/j.compstruct.2017. 08.037.
  • 23. Bairan, K.A., Selamat, M.Z., Sahadan, S.N., Malingam, S.D., Mohamad, N., 2016. Effect of Carbon Nanotubes Loading in Multifiller Polymer Composite as Bipolar Plate for PEM Fuel Cell, Proced. Chem., 19, 91-97. doi:10.1016/j.proche.2016.03.120.
  • 24. Chaiwan, P., Pumchusak, J., 2015. Wet vs. Dry Dispersion Methods for Multiwall Carbon Nanotubes in the High Graphite Content Phenolic Resin Composites for use as Bipolar Plate Application, Electrochim. Acta, 158, 1-6. doi.org/10.1016/j.electacta.2015.01.101.
  • 25. Suherman, H., Sulong, A.B., Sahari, J., 2013. Effect of Compression Molding Parameters on the In-Plane and Through-Plane Conductivity of Carbon Nanotubes/Graphite/Epoxy Nanocomposites as Bipolar Plate Material for a Polymer Electrolyte Membrane Fuel Cell, Ceram. Int., 39, 1277-1284. doi.org/10.1016/j. ceramint.2012.07.059.
  • 26. Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M., Yang, C.H., Tsai, M.C., Yen, M.Y., Hsiao, M.C., Lee, S.J., Xie, X.F., Hsiao, Y.H., 2008. Preparation and Properties of Carbon Nanotube/Polypropylene Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells, J. Power Sources, 185, 1225-1232. doi:10.1016/j.jpowsour.2008.06. 097.
  • 27. Davé, R., Gupta, R., Pfeffer, R., Sundaresan, ,S., Tomassone, M.S., 2006. Deagglomeration and Mixing of Nanoparticles, NSF Nanoscale Science and Engineering Grantees Conference, Grant#: 0506722, 2006, Dec 4-6.
  • 28. Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., Simard, B., Kingston, C.T., Bourne, O., Johnston, A., 2011. Enhancement of Mechanical Performance of Epoxy/carbon Fiber Laminate Composites Using Single-walled Carbon Nanotubes, Compos. Sci. Technol., 71, 1569–1578. doi:10.1016/j.compscitech.2011.06.015.
  • 29. Mirjalili, V., Ramachandramoorthy, R., Hubert, P., 2014. Enhancement of Fracture Toughness of Carbon Fiber Laminated Composites Using Multi Wall Carbon Nanotubes. Carbon, 79, 413–423. doi:10.1016/j.carbon.2014.07.084.
  • 30. Jones, M.R., 1999. Mechanics of Composite Materials, 2nd Ed., Taylor & Francis, Inc. PA, 19106.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fatih Darıcık 0000-0002-5813-1260

Alparslan Topcu This is me 0000-0002-7668-0204

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 4

Cite

APA Darıcık, F., & Topcu, A. (2020). Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 925-936. https://doi.org/10.21605/cukurovaummfd.868756
AMA Darıcık F, Topcu A. Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs. cukurovaummfd. December 2020;35(4):925-936. doi:10.21605/cukurovaummfd.868756
Chicago Darıcık, Fatih, and Alparslan Topcu. “Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified With CNTs”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, no. 4 (December 2020): 925-36. https://doi.org/10.21605/cukurovaummfd.868756.
EndNote Darıcık F, Topcu A (December 1, 2020) Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 4 925–936.
IEEE F. Darıcık and A. Topcu, “Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs”, cukurovaummfd, vol. 35, no. 4, pp. 925–936, 2020, doi: 10.21605/cukurovaummfd.868756.
ISNAD Darıcık, Fatih - Topcu, Alparslan. “Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified With CNTs”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/4 (December 2020), 925-936. https://doi.org/10.21605/cukurovaummfd.868756.
JAMA Darıcık F, Topcu A. Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs. cukurovaummfd. 2020;35:925–936.
MLA Darıcık, Fatih and Alparslan Topcu. “Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified With CNTs”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 4, 2020, pp. 925-36, doi:10.21605/cukurovaummfd.868756.
Vancouver Darıcık F, Topcu A. Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs. cukurovaummfd. 2020;35(4):925-36.