Research Article
BibTex RIS Cite

Sedanter bireyler ve sporcularda substrat kesişim noktasındaki yağ oksidasyon hızlarının karşılaştırılması

Year 2019, Volume: 44 Issue: Supplement 1, 412 - 418, 29.12.2019
https://doi.org/10.17826/cumj.571942

Abstract

Amaç: Bu çalışmada sporcu ve sedanter bireylerin performans testleri sonucunda tespit edilen en yüksek yağ yakım aralıkları ve substrat kesişim noktalarındaki metabolik değişkenlerin değerlendirilmesi amaçlanmıştır.

Gereç ve Yöntem: Çalışmaya 10 sedanter (22,1 ± 0,5 yıl) ve 11 sporcu (22,3 ± 0,6 yıl) olmak üzere toplam 21 erkek gönüllü katılmıştır. Katılımcıların egzersiz testleri yürüme bandında indirekt kalorimetre kullanılarak yapılmıştır (Cosmed Quark CPET). Uygulanan iki farklı egzersiz testi sonucunda katılımcıların performans düzeylerine ve yağ oksidasyon hızlarına ait veriler elde edilmiştir.

Bulgular: Beden kitle indekslerine göre sporcular normal, sedanter bireyler ise fazla kilolu sınıfında yer almışlar ve sedanter bireylerin vücut yüzde yağ oranları sporculara kıyasla istatistiksel olarak anlamlı düzeyde yüksek bulunmuştur. Sporcuların pik oksijen alım seviyeleri anlamlı düzeyde yüksek olmasına karşın, en yüksek yağ oksidasyon hızları sedanter bireylere benzer seviyede tespit edilmiştir. Karbonhidratların baskın enerji kaynağı haline gelmeye başladığı kesişim noktasında, sporcu ve sedanter bireylerin oksijen alım miktarları arasında istatistiksel fark olmamasına karşın, bu değerin maksimal oksijen alım kapasitelerine oranı değerlendirildiğinde sporcu grupta istatistiksel olarak anlamlı düzeyde düşük bulunmuştur. 

Sonuç: Oksijen alım kapasitesi yüksek olan sporcu bireylerin hem en yüksek yağ yakım hızlarının hem de kesişim noktasındaki yağ yakım hızlarının sedanter gruba kıyasla istatistiksel farklılık göstermemesi, yağ oksidasyonunu belirleyen tek faktörün maksimal aerobik kapasite olmayabileceğini düşündürmektedir.


References

  • 1. Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16(3):209-214.
  • 2. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.
  • 3. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sport Exer. 2002;34(1):92-97.
  • 4. Gmada N, Marzouki H, Haboubi M, Tabka Z, Shephard RJ, Bouhlel E. Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues. Diabetes Metab. 2012;38(1):40-45.
  • 5. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol (1985). 1994;76(6):2253-2261.
  • 6. Borel B, Coquart J, Boitel G, et al. Effects of Endurance Training at the Crossover Point in Women with Metabolic Syndrome. Med Sci Sports Exerc. 2015;47(11):2380-2388.
  • 7. Marzouki H, Farhani Z, Gmada N, Tabka Z, Shephard RJ, Bouhlel E. Relative and absolute reliability of the crossover and maximum fat oxidation points during treadmill running. Science & Sports. 2014;29(6):e107-e114.
  • 8. Perez-Martin A, Dumortier M, Raynaud E, et al. Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes & Metabolism. 2001;27(4):466-474.
  • 9. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes & Metabolism. 2003;29(5):509-518.
  • 10. Gonzalez-Haro C, Galilea PA, Gonzalez-de-Suso JM, Drobnic F, Escanero JF. Maximal lipidic power in high competitive level triathletes and cyclists. Br J Sports Med. 2007;41(1):23-28.
  • 11. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;1(1):e000047.
  • 12. Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006;98(5):497-506.
  • 13. Siri WE. Volumetric Approach to Body Composition. In: Josef Brozek AH, ed. Techniques for Measuring Body Composition. Washington, D. C.: National Academy op Sciences—National Research Council; 1961:77-135.
  • 14. Martin AD, Spenst LF, Drinkwater DT, Clarys JP. Anthropometric Estimation of Muscle Mass in Men. Med Sci Sport Exer. 1990;22(5):729-733.
  • 15. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634.
  • 16. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277.
  • 17. Clark A, De la Rosa AB, DeRevere JL, Astorino TA. Effects of various interval training regimes on changes in maximal oxygen uptake, body composition, and muscular strength in sedentary women with obesity. European Journal of Applied Physiology. 2019;119(4):879-888.
  • 18. Jette M, Sidney K, Blumchen G. Metabolic Equivalents (Mets) in Exercise Testing, Exercise Prescription, and Evaluation of Functional-Capacity. Clin Cardiol. 1990;13(8):555-565.
  • 19. Mendes MD, da Silva I, Ramires V, et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. Plos One. 2018;13(7).
  • 20. Franklin BA, Brinks J, Berra K, Lavie CJ, Gordon NF, Sperling LS. Using Metabolic Equivalents in Clinical Practice. Am J Cardiol. 2018;121(3):382-387.
  • 21. Chuang ML, Ting H, Otsuka T, et al. Aerobically generated CO2 stored during early exercise. Journal of Applied Physiology. 1999;87(3):1048-1058.
  • 22. Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol. 2007;92(2):347-355.
  • 23. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (1985). 2005;98(1):160-167.
  • 24. Randell RK, Rollo I, Roberts TJ, Dalrymple KJ, Jeukendrup AE, Carter JM. Maximal Fat Oxidation Rates in an Athletic Population. Med Sci Sport Exer. 2017;49(1):133-140.
  • 25. Cetin D, Lessig BA, Nasr E. Comprehensive Evaluation for Obesity: Beyond Body Mass Index. J Am Osteopath Assoc. 2016;116(6):376-382.
  • 26. Lund J, Helle SA, Li Y, et al. Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep. 2018;8(1):17549.
  • 27. Wagoner CW, Hanson ED, Ryan ED, et al. 2-Weeks of Lower Body Resistance Training Enhances Cycling Tolerability to Improve Precision of Maximal Cardiopulmonary Exercise Testing in Sedentary Middle-Aged Females. Appl Physiol Nutr Metab. 2019.
  • 28. De Brabandere A, Op De Beeck T, Schutte KH, Meert W, Vanwanseele B, Davis J. Data fusion of body-worn accelerometers and heart rate to predict VO2max during submaximal running. PLoS One. 2018;13(6):e0199509.
  • 29. González-Haro C. Maximal Fat Oxidation Rate andCross-OverPoint with Respect to Lactate Thresholds do not Have Good Agreement. International Journal of Sports Medicine. 2011;32(05):379-385.
  • 30. Mendelson M, Jinwala K, Wuyam B, Levy P, Flore P. Can crossover and maximal fat oxidation rate points be used equally for ergocycling and walking/running on a track? Diabetes Metab. 2012;38(3):264-270.
  • 31. Takayama F, Aoyagi A, Shimazu W, Nabekura Y. Effects of Marathon Running on Aerobic Fitness and Performance in Recreational Runners One Week after a Race. J Sports Med (Hindawi Publ Corp). 2017;2017:9402386.
  • 32. Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD. Energy expenditure, sex, and endogenous fuel availability in humans. Journal of Clinical Investigation. 2003;111(7):981-988.
  • 33. Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809-1828.
  • 34. Lima-Silva AE, Bertuzzi RCM, Pires FO, et al. Relationship between training status and maximal fat oxidation rate. Journal of Sports Science and Medicine. 2010;9(1):31-35.
  • 35. Croci I, Borrani F, Byrne NM, et al. Reproducibility of Fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One. 2014;9(6):e97930.
  • 36. Croci I, Hickman IJ, Wood RE, Borrani F, Macdonald GA, Byrne NM. Fat oxidation over a range of exercise intensities: fitness versus fatness. Appl Physiol Nutr Metab. 2014;39(12):1352-1359.
  • 37. Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol. 2018;9:599.
  • 38. Dandanell S, Meinild-Lundby AK, Andersen AB, et al. Determinants of maximal whole-body fat oxidation in elite cross-country skiers: Role of skeletal muscle mitochondria. Scand J Med Sci Sports. 2018;28(12):2494-2504.

Comparison of fat oxidation rates at substrate intersection in sedentary individuals and athletes

Year 2019, Volume: 44 Issue: Supplement 1, 412 - 418, 29.12.2019
https://doi.org/10.17826/cumj.571942

Abstract

Purpose: The aim of this study was to evaluate metabolic responses of athletic and sedentary men at maximal fat oxidation and crossover points that were determined by performance tests. 

Materials and Methods: 10 sedentary (22.1 ± 0.5 years) and 11 athletic (22.3 ± 0.6 years) volunteers participated in this study. Participants’ exercise tests were performed on a treadmill. Maximal fat oxidation rates and metabolic responses at cross over point (COP) were measured by indirect calorimeter (Cosmed Quark CPET). 

Results: Sedentary individuals were classified as overweight whereas athletic individuals were classified as normal according to their body mass indices and sedentary individuals’ body fat percentage were significantly higher than athletic participants. Although athletic participants’ peak oxygen uptakes were significantly higher, maximal fat oxidation rates were similar at both groups. At COP where oxidation of carbohydrates predominate fat oxidation, both group’s oxygen consumption rates were found to be similar. On the other hand, the ratio of oxygen consumption to maximal oxygen uptake at COP was significantly lower in athletic group.

Conclusion: Athletic individuals’, whom had higher oxygen uptake capacities, maximal fat oxidation rates and fat oxidation rates at COP were not significantly higher than sedentary individuals. This finding indicates that maximal aerobic capacity might not be the only determinant of fat oxidation.


References

  • 1. Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16(3):209-214.
  • 2. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.
  • 3. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sport Exer. 2002;34(1):92-97.
  • 4. Gmada N, Marzouki H, Haboubi M, Tabka Z, Shephard RJ, Bouhlel E. Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues. Diabetes Metab. 2012;38(1):40-45.
  • 5. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol (1985). 1994;76(6):2253-2261.
  • 6. Borel B, Coquart J, Boitel G, et al. Effects of Endurance Training at the Crossover Point in Women with Metabolic Syndrome. Med Sci Sports Exerc. 2015;47(11):2380-2388.
  • 7. Marzouki H, Farhani Z, Gmada N, Tabka Z, Shephard RJ, Bouhlel E. Relative and absolute reliability of the crossover and maximum fat oxidation points during treadmill running. Science & Sports. 2014;29(6):e107-e114.
  • 8. Perez-Martin A, Dumortier M, Raynaud E, et al. Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes & Metabolism. 2001;27(4):466-474.
  • 9. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes & Metabolism. 2003;29(5):509-518.
  • 10. Gonzalez-Haro C, Galilea PA, Gonzalez-de-Suso JM, Drobnic F, Escanero JF. Maximal lipidic power in high competitive level triathletes and cyclists. Br J Sports Med. 2007;41(1):23-28.
  • 11. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;1(1):e000047.
  • 12. Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006;98(5):497-506.
  • 13. Siri WE. Volumetric Approach to Body Composition. In: Josef Brozek AH, ed. Techniques for Measuring Body Composition. Washington, D. C.: National Academy op Sciences—National Research Council; 1961:77-135.
  • 14. Martin AD, Spenst LF, Drinkwater DT, Clarys JP. Anthropometric Estimation of Muscle Mass in Men. Med Sci Sport Exer. 1990;22(5):729-733.
  • 15. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634.
  • 16. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277.
  • 17. Clark A, De la Rosa AB, DeRevere JL, Astorino TA. Effects of various interval training regimes on changes in maximal oxygen uptake, body composition, and muscular strength in sedentary women with obesity. European Journal of Applied Physiology. 2019;119(4):879-888.
  • 18. Jette M, Sidney K, Blumchen G. Metabolic Equivalents (Mets) in Exercise Testing, Exercise Prescription, and Evaluation of Functional-Capacity. Clin Cardiol. 1990;13(8):555-565.
  • 19. Mendes MD, da Silva I, Ramires V, et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. Plos One. 2018;13(7).
  • 20. Franklin BA, Brinks J, Berra K, Lavie CJ, Gordon NF, Sperling LS. Using Metabolic Equivalents in Clinical Practice. Am J Cardiol. 2018;121(3):382-387.
  • 21. Chuang ML, Ting H, Otsuka T, et al. Aerobically generated CO2 stored during early exercise. Journal of Applied Physiology. 1999;87(3):1048-1058.
  • 22. Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol. 2007;92(2):347-355.
  • 23. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (1985). 2005;98(1):160-167.
  • 24. Randell RK, Rollo I, Roberts TJ, Dalrymple KJ, Jeukendrup AE, Carter JM. Maximal Fat Oxidation Rates in an Athletic Population. Med Sci Sport Exer. 2017;49(1):133-140.
  • 25. Cetin D, Lessig BA, Nasr E. Comprehensive Evaluation for Obesity: Beyond Body Mass Index. J Am Osteopath Assoc. 2016;116(6):376-382.
  • 26. Lund J, Helle SA, Li Y, et al. Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep. 2018;8(1):17549.
  • 27. Wagoner CW, Hanson ED, Ryan ED, et al. 2-Weeks of Lower Body Resistance Training Enhances Cycling Tolerability to Improve Precision of Maximal Cardiopulmonary Exercise Testing in Sedentary Middle-Aged Females. Appl Physiol Nutr Metab. 2019.
  • 28. De Brabandere A, Op De Beeck T, Schutte KH, Meert W, Vanwanseele B, Davis J. Data fusion of body-worn accelerometers and heart rate to predict VO2max during submaximal running. PLoS One. 2018;13(6):e0199509.
  • 29. González-Haro C. Maximal Fat Oxidation Rate andCross-OverPoint with Respect to Lactate Thresholds do not Have Good Agreement. International Journal of Sports Medicine. 2011;32(05):379-385.
  • 30. Mendelson M, Jinwala K, Wuyam B, Levy P, Flore P. Can crossover and maximal fat oxidation rate points be used equally for ergocycling and walking/running on a track? Diabetes Metab. 2012;38(3):264-270.
  • 31. Takayama F, Aoyagi A, Shimazu W, Nabekura Y. Effects of Marathon Running on Aerobic Fitness and Performance in Recreational Runners One Week after a Race. J Sports Med (Hindawi Publ Corp). 2017;2017:9402386.
  • 32. Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD. Energy expenditure, sex, and endogenous fuel availability in humans. Journal of Clinical Investigation. 2003;111(7):981-988.
  • 33. Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809-1828.
  • 34. Lima-Silva AE, Bertuzzi RCM, Pires FO, et al. Relationship between training status and maximal fat oxidation rate. Journal of Sports Science and Medicine. 2010;9(1):31-35.
  • 35. Croci I, Borrani F, Byrne NM, et al. Reproducibility of Fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One. 2014;9(6):e97930.
  • 36. Croci I, Hickman IJ, Wood RE, Borrani F, Macdonald GA, Byrne NM. Fat oxidation over a range of exercise intensities: fitness versus fatness. Appl Physiol Nutr Metab. 2014;39(12):1352-1359.
  • 37. Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol. 2018;9:599.
  • 38. Dandanell S, Meinild-Lundby AK, Andersen AB, et al. Determinants of maximal whole-body fat oxidation in elite cross-country skiers: Role of skeletal muscle mitochondria. Scand J Med Sci Sports. 2018;28(12):2494-2504.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Medical Physiology
Journal Section Research
Authors

Özgür Günaştı 0000-0002-2668-7416

Çiğdem Özdemir 0000-0003-3360-8541

Kerem T. Özgünen This is me 0000-0002-6840-6299

Abdullah Kılcı This is me 0000-0002-5242-1582

Selcen Korkmaz Eryılmaz 0000-0002-3680-3580

S. Sadi Kurdak This is me 0000-0002-0797-046X

Publication Date December 29, 2019
Acceptance Date August 7, 2019
Published in Issue Year 2019 Volume: 44 Issue: Supplement 1

Cite

MLA Günaştı, Özgür et al. “Sedanter Bireyler Ve Sporcularda Substrat kesişim noktasındaki Yağ Oksidasyon hızlarının karşılaştırılması”. Cukurova Medical Journal, vol. 44, 2019, pp. 412-8, doi:10.17826/cumj.571942.