Research Article
BibTex RIS Cite

Farklı aerobik kapasiteye sahip kişilerde yağ oksidasyon devamlılığının takibi

Year 2019, Volume: 44 Issue: Supplement 1, 173 - 180, 29.12.2019
https://doi.org/10.17826/cumj.578040

Abstract

Amaç: Bu çalışmada, 40 dakikalık sabit submaksimal bir egzersiz sırasında, farklı aerobik kapasiteye sahip sedanter ve sporcu bireylerin maksimal yağ oksidasyon hızlarına ait değişimlerin değerlendirilmesi amaçlanmıştır.

Gereç ve Yöntem: Çalışmaya rekreasyonel düzeyde spor yapan (n=11) ve sedanter olan (n=10) toplam 21 erkek katıldı. Katılımcıların egzersiz testleri yürüme bandında (Cosmed), gerçekleştirildi. Yağ oksidasyon hızları ve egzersize verdikleri metabolik cevaplar indirekt kalorimetri ile ölçüldü (Quark CPET). Tüm katılımcılara, maksimal performans testi, yağmaks testi ve 40dk yürüme testi olmak üzere üç farklı test uygulandı.

Bulgular: Sporcu gruba ait zirve oksijen tüketim değeri, % yağ ve % kas oranları, beden kitle indeks değeri ve maksimal yağ oksidasyonunun elde edildiği egzersiz şiddet düzeyi ile sedanter gruba ait aynı parametre değerlerinde istatistiksel olarak anlamlı farklılıklar bulundu. Maksimal yağ oksidasyonu değerlerinde ise anlamlı bir farklılık yoktu. Diğer taraftan yağ oksidasyonu 40dk’lık sabit submaksimal egzersiz sırasında sabit kalmayarak her iki grupta da azaldı. Sporcu grupta 16dk, Sedanter grupta yaklaşık 14dk’da sabit bir düzeye ulaştı.

Sonuç: Yağ oksidasyonunu belirlemede maksimal aerobik kapasite dışında başka faktörlerin de araştırılmaya devam edilmesi oldukça önemlidir. Daha elit sporcularda yağ oksidasyon paterninin araştırılması yağ metabolizmasındaki farklı fizyolojik mekanizmaların anlaşılmasında katkıda bulunabilir.


References

  • 1. Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD. Energy expenditure, sex, and endogenous fuel availability in humans. Journal of Clinical Investigation. 2003;111(7):981-988.
  • 2. Shimada K, Yamamoto Y, Iwayama K, et al. Effects of post-absorptive and postprandial exercise on 24 h fat oxidation. Metabolism. 2013;62(6):793-800.
  • 3. Weltan SM, Bosch AN, Dennis SC, Noakes TD. Influence of muscle glycogen content on metabolic regulation. Am J Physiol. 1998;274(1 Pt 1):E72-82.
  • 4. Ben Ounis O, Elloumi M, Zouhal H, et al. Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann Endocrinol (Paris). 2011;72(1):34-41.
  • 5. Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol. 2018;9:599.
  • 6. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380-391.
  • 7. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sport Exer. 2002;34(1):92-97.
  • 8. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.
  • 9. Friedlander AL, Jacobs KA, Fattor JA, et al. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training. Am J Physiol Endocrinol Metab. 2007;292(1):E107-116.
  • 10. Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006;98(5):497-506.
  • 11. Lima-Silva AE, Bertuzzi RCM, Pires FO, et al. Relationship between training status and maximal fat oxidation rate. Journal of Sports Science and Medicine. 2010;9(1):31-35.
  • 12. Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16(3):209-214.
  • 13. Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5):E1009-1017.
  • 14. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113-116.
  • 15. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol-Endoc M. 2000;279(5):E1039-E1044.
  • 16. Meyer T, Gassler N, Kindermann W. Determination of "Fatmax"with 1 h cycling protocols of constant load. Appl Physiol Nutr Metab. 2007;32(2):249-256.
  • 17. Siri WE. Volumetric Approach to Body Composition. In: Josef Brozek AH, ed. Techniques for Measuring Body Composition. Washington, D. C.: National Academy op Sciences—National Research Council; 1961:77-135.
  • 18. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. British Journal of Nutrition. 2007;40(03).
  • 19. Martin AD, Spenst LF, Drinkwater DT, Clarys JP. Anthropometric Estimation of Muscle Mass in Men. Med Sci Sport Exer. 1990;22(5):729-733.
  • 20. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634.
  • 21. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277.
  • 22. Bogdanis GC, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 2008;7(4):525-531.
  • 23. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61(4 Suppl):968S-979S.
  • 24. Brun JF, Romain AJ, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): From physiological measurements to clinical applications. Facts and uncertainties. Science & Sports. 2011;26(2):57-71.
  • 25. Lange KHW. Fat metabolism in exercise - with special reference to training and growth hormone administration. Scand J Med Sci Spor. 2004;14(2):74-99.
  • 26. Tolfrey K, Jeukendrup AE, Batterham AM. Group- and individual-level coincidence of the 'Fatmax' and lactate accumulation in adolescents. Eur J Appl Physiol. 2010;109(6):1145-1153.
  • 27. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26 Suppl 1:S28-37.
  • 28. Mendelson M, Jinwala K, Wuyam B, Levy P, Flore P. Can crossover and maximal fat oxidation rate points be used equally for ergocycling and walking/running on a track? Diabetes Metab. 2012;38(3):264-270.
  • 29. Chuang ML, Ting H, Otsuka T, et al. Aerobically generated CO2 stored during early exercise. Journal of Applied Physiology. 1999;87(3):1048-1058.
  • 30. Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol. 2007;92(2):347-355.
  • 31. Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol. 2007;581(Pt 2):431-444.
  • 32. Hiatt WR, Regensteiner JG, Wolfel EE, Ruff L, Brass EP. Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J Clin Invest. 1989;84(4):1167-1173.
  • 33. Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809-1828.
  • 34. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;1(1):e000047.

Monitorization of fat oxidation sustainability in individuals with different aerobic capacity

Year 2019, Volume: 44 Issue: Supplement 1, 173 - 180, 29.12.2019
https://doi.org/10.17826/cumj.578040

Abstract

Purpose: The aim of this study was to evaluate changes in the maximal fat oxidation rate during 40 min of continuous submaximal exercise in athletes and sedentary individuals which they have the different aerobic capacity.

Materials and Methods: Recreational athletes (n=11) and sedentary persons (n=10) were participated this study. Exercise tests were performed on a treadmill (Cosmed). Fat oxidations and metabolic responses during exercise were measured with indirect calorimetry (Quark b2). Maximal performance test, fatmax test, and a 40-minute walking test were carried out to all the participants.

Results: Essentially athletic participants’ peakVO2, body fat, body muscle percentages, body mass index, and exercise intensity of maximal fat oxidation rate were significant than sedentary person’s. But there were no significant differences between the maximal fat oxidation rates. On the other site, in both groups during submaximal continuous exercise for 40 min the fat oxidation rate was not sustained and decreased to a plateau level within the first 16 min for athletes and 14 min for sedentary participants.

Conclusion: It is important to investigate factors other than maximal aerobic capacity in determining fat oxidation. Investigating the fat oxidation pattern in more elite athletes may contribute to the understanding of the different physiological mechanisms in fat metabolism.


References

  • 1. Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD. Energy expenditure, sex, and endogenous fuel availability in humans. Journal of Clinical Investigation. 2003;111(7):981-988.
  • 2. Shimada K, Yamamoto Y, Iwayama K, et al. Effects of post-absorptive and postprandial exercise on 24 h fat oxidation. Metabolism. 2013;62(6):793-800.
  • 3. Weltan SM, Bosch AN, Dennis SC, Noakes TD. Influence of muscle glycogen content on metabolic regulation. Am J Physiol. 1998;274(1 Pt 1):E72-82.
  • 4. Ben Ounis O, Elloumi M, Zouhal H, et al. Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann Endocrinol (Paris). 2011;72(1):34-41.
  • 5. Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol. 2018;9:599.
  • 6. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380-391.
  • 7. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sport Exer. 2002;34(1):92-97.
  • 8. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.
  • 9. Friedlander AL, Jacobs KA, Fattor JA, et al. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training. Am J Physiol Endocrinol Metab. 2007;292(1):E107-116.
  • 10. Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K. Maximal fat oxidation rates in endurance trained and untrained women. Eur J Appl Physiol. 2006;98(5):497-506.
  • 11. Lima-Silva AE, Bertuzzi RCM, Pires FO, et al. Relationship between training status and maximal fat oxidation rate. Journal of Sports Science and Medicine. 2010;9(1):31-35.
  • 12. Nordby P, Saltin B, Helge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16(3):209-214.
  • 13. Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5):E1009-1017.
  • 14. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113-116.
  • 15. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol-Endoc M. 2000;279(5):E1039-E1044.
  • 16. Meyer T, Gassler N, Kindermann W. Determination of "Fatmax"with 1 h cycling protocols of constant load. Appl Physiol Nutr Metab. 2007;32(2):249-256.
  • 17. Siri WE. Volumetric Approach to Body Composition. In: Josef Brozek AH, ed. Techniques for Measuring Body Composition. Washington, D. C.: National Academy op Sciences—National Research Council; 1961:77-135.
  • 18. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. British Journal of Nutrition. 2007;40(03).
  • 19. Martin AD, Spenst LF, Drinkwater DT, Clarys JP. Anthropometric Estimation of Muscle Mass in Men. Med Sci Sport Exer. 1990;22(5):729-733.
  • 20. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634.
  • 21. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277.
  • 22. Bogdanis GC, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 2008;7(4):525-531.
  • 23. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61(4 Suppl):968S-979S.
  • 24. Brun JF, Romain AJ, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): From physiological measurements to clinical applications. Facts and uncertainties. Science & Sports. 2011;26(2):57-71.
  • 25. Lange KHW. Fat metabolism in exercise - with special reference to training and growth hormone administration. Scand J Med Sci Spor. 2004;14(2):74-99.
  • 26. Tolfrey K, Jeukendrup AE, Batterham AM. Group- and individual-level coincidence of the 'Fatmax' and lactate accumulation in adolescents. Eur J Appl Physiol. 2010;109(6):1145-1153.
  • 27. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26 Suppl 1:S28-37.
  • 28. Mendelson M, Jinwala K, Wuyam B, Levy P, Flore P. Can crossover and maximal fat oxidation rate points be used equally for ergocycling and walking/running on a track? Diabetes Metab. 2012;38(3):264-270.
  • 29. Chuang ML, Ting H, Otsuka T, et al. Aerobically generated CO2 stored during early exercise. Journal of Applied Physiology. 1999;87(3):1048-1058.
  • 30. Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol. 2007;92(2):347-355.
  • 31. Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol. 2007;581(Pt 2):431-444.
  • 32. Hiatt WR, Regensteiner JG, Wolfel EE, Ruff L, Brass EP. Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J Clin Invest. 1989;84(4):1167-1173.
  • 33. Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809-1828.
  • 34. Hetlelid KJ, Plews DJ, Herold E, Laursen PB, Seiler S. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med. 2015;1(1):e000047.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Medical Physiology
Journal Section Research
Authors

Çiğdem Özdemir 0000-0003-3360-8541

Özgür Günaştı 0000-0002-2668-7416

Kerem T. Özgünen This is me 0000-0002-6840-6299

Abdullah Kılcı This is me 0000-0002-5242-1582

Selcen Korkmaz Eryılmaz 0000-0002-3680-3580

S.sadi Kurdak This is me 0000-0002-0797-046X

Publication Date December 29, 2019
Acceptance Date July 8, 2019
Published in Issue Year 2019 Volume: 44 Issue: Supplement 1

Cite

MLA Özdemir, Çiğdem et al. “Farklı Aerobik Kapasiteye Sahip kişilerde Yağ Oksidasyon devamlılığının Takibi”. Cukurova Medical Journal, vol. 44, 2019, pp. 173-80, doi:10.17826/cumj.578040.