Research Article
BibTex RIS Cite

Silibinin’in yüksek kolesterol diyeti ile beslenen sıçanlarda hiperlipidemi üzerine etkisi

Year 2021, Volume: 46 Issue: 1, 125 - 131, 31.03.2021

Abstract

Amaç: Hipolipidemik ilaçlar mevcut olmasına rağmen, daha etkin bir hipolipidemik ajan arayışı devam etmektedir. Bu nedenle, bu çalışmada yüksek kolesterol diyeti ile beslenen sıçanlarda Silibinin hiperlipidemiye olan etkisinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Öncelikle deney grubundaki sıçanlar obez hale getirilmiştir. Sıçanlara 60 gün boyunca yumurta sarısı verilmiş ve daha sonra 50 mg/kg ve 100 mg/kg Silibin i.p. olarak 7 gün boyunca uygulanmıştır.
Bulgular: Sıçanların ilk ve son kiloları arasında anlamlı bir fark bulunmuştur. Çalışmamızda yüksek kolesterollü diyet ile beslenen grupların total kolesterol (TK), LDL ve trigliserit (TG), VLDL seviyeleri, kontrol grubuna kıyasla anlamlı bir şekilde yükselirken, HDL seviyesinde kontrol grubuna göre anlamlı bir azalma görülmüştür. Gruplar arasında OxLDL ve TAS değerleri bakımından anlamlı bir fark olduğu tespit edilmiştir.
Sonuç: Bu çalışmada deneysel obez sıçan modellerinde Silibinin, serum LDL, TK, VLDL, HDL, TG, OxLDL düzeylerine etkisi incelenmiştir. Silibinin, yüksek kolesterol diyetle beslenen (YKD) sıçanlarda 100 mg/kg dozda kullanıldığında, TG ve LDL seviyelerini düşürmede, HDL seviyesini arttırmada ve hepatik lipid birikimini azaltmada etkili bir rol oynadığı sonucuna ulaşılmıştır. Silibin kullanımının, antihiperlipidemik etkiye yol açmadığı, ancak antioksidan etkiye neden olduğu ortaya konulmuştur.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

18.YL.023

References

  • 1. Sun CJ, McCudden C, Brisson D, Shaw J, Gaudet D, Ooi TC. Calculated Non-HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019; 3;4(1):bvz010.
  • 2. Strilchuk L, Tocci G, Fogacci F, Cicero AFG. An overview of rosuvastatin/ezetimibe association for the treatment of hypercholesterolemia and mixed dyslipidemia. Expert Opin Pharmacother. 2020; 21(5):531-539.
  • 3. Sahle BW, Chen W, Melaku YA, Akombi BJ, Rawal LB, Renzaho AMN. Association of Psychosocial Factors with Risk of Chronic Diseases: A Nationwide Longitudinal Study. Am J Prev Med. 2020; 58(2):e39-e50.
  • 4. Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Current opinion in lipidology. 2016; 27(3):233-241.
  • 5. Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in Atherosclerosis. J Atheroscler Thromb. 2016; 23(2):119-27.
  • 6. Wallace SN, Raible J, Carrier DJ, Vaughn KL, Griffis CL, Clausen EC, Nagarajan S. Pressurized water versus ethanol as a Silybum marianum extraction solvent for inhibition of low-density lipoprotein oxidation mediated by copper and J774 macrophage cells. Can J Physiol Pharmacol. 2007; 85, 894–902.
  • 7. Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother Res. 2018;32(10):1933-1949.
  • 8. Kockx M, Traini M, Kritharides L. Cell-specific production, secretion, and function of apolipoprotein. E. J Mol Med (Berl). 2018; 96(5):361-371.
  • 9. Sahebkar A, Simental-Mendía LE, Pirro M, Banach M, Watts GF, Sirtori C, Al-Rasadi K, Atkin SL. Author Correction: Impact of ezetimibe on plasma lipoprotein (a) concentrations as monotherapy or in combination with statins: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2020; 10(1):2999.
  • 10. Parashar P, Rana P, Dwivedi M, Saraf SA. Dextrose modified bilosomes for peroral delivery: improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res. 2019; 29(3):251-263.
  • 11. Martinelli T, Whittaker A, Benedettelli S, Carboni A, Andrzejewska J. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway. Phytochemistry. 2017; 144:9-18.
  • 12. Albassam AA, Frye RF, Markowitz JS. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem Biol Interact. 2017; 271:24-29.
  • 13. Di Costanzo A, Angelico R. Advanced nanotechnologies for enhancing the bioavailability of silymarin: a state of the art. Peer-reviewed version available at Molecules. 2019; 24:2155.
  • 14. Esmaeil N, Anaraki SB, Gharagozloo M, Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol. 2017; 50:194-201.
  • 15. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37(4): 277-285.
  • 16. Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38(12):1103-1111.
  • 17. Yida Z, Imam MU, Ismail M, Ismail N, Hou Z. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats. Drug Des Devel Ther. 2015; 9:3951–3959.
  • 18. Abdel-Azeem Metwally M, El-Gellal AM, M, El-Sawaisi SM. Effects of Silymarin on Lipid Metabolism in Rats. Word Appl Sci J. 2009; 6 (12):1634-1637.
  • 19. Putakala M, Gujjala S, Nukala S, Bongu SBR, Chintakunta N, Desireddy S. Cardioprotective effect of Phyllanthus amarus against high fructose diet induced myocardial and aortic stress in rat model. Biomed Pharmacother. 2017; 95:1359-1368.
  • 20. Gazák R, Purchartová K, Marhol P, Zivná L, Sedmera P, Valentová K, Kato N, Matsumura H, Kaihatsu K, Kren V. Antioxidant and antiviral activities of silybin fatty acid conjugates. Eur J Med Chem. 2010; 45:1059-1067.
  • 21. Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet J Clin Biochem Nutr. 2018; 62(3):230–237.
  • 22. Méndez-Sánchez N, Dibildox-Martinez M, Sosa-Noguera J, Sánchez-Medal R, Flores-Murrieta FJ. Superior silybin bioavailability of silybin–phosphatidylcholine complex in oily-medium soft-gel capsules versus conventional silymarin tablets in healthy volunteers. Méndez-Sánchez et al. BMC Pharmacol and Toxicol. 2019; 20(1):5.
  • 23. Summerhill VI, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int J Mol Sci. 2019; 20(14):3561.
  • 24. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González Á, Esquivel-Soto J, Esquivel-Chirino C, García-Luna y González-Rubio M, A Gayosso-de-Lucio J, Morales-González JA. Hepatoprotective effect of silymarin. World J Hepatol. 2014; 6(3):144-149.
  • 25. Gobalakrishnan S, Asirvatham SS, Janarthanam V. Effect of Silybin on Lipid Profile in Hypercholesterolaemic Rats. J Clin Diagn Res. 2016; 10(4):FF01-FF05.
  • 26. Skottová N, Vecera R, Urbánek K, Vána P, Walterová D, Cvak L. Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacol Res. 2003; 47(1):17–26.
  • 27. Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet J Clin Biochem Nutr. 2018; 62(3):230–237.
  • 28. Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Anna Bilia AR, Bergonzi MC. Nanostructured Lipid Carriers as Promising Delivery Systems for Plant Extracts: The Case of Silymarin. Appl Sci. 2018; 8(7):1163.

Effect of silibinin on the hyperlipidemia in rats fed with high cholesterol diet

Year 2021, Volume: 46 Issue: 1, 125 - 131, 31.03.2021

Abstract

Purpose: Despite current hypolipidemic drugs, the search for a more effective hypolipidemic agent is ongoing. In this study, it was aimed to investigate the effect of Silibinin on hyperlipidemia in rats fed high cholesterol diet (HCD).
Materials and Methods: Rats were made obese. Rats were given egg yolk for 60 days and then 50 mg/kg, 100 mg/kg Silibinin were applied i.p. for 7 days.
Results: The first and last weights of the rats were significantly different. While total cholesterol (TC), LDL, TG and VLDL levels increased significantly in the groups fed with HCD, HDL level reduced compared to control group (CG). OxLDL and TAS were significantly different between groups.
Conclusion: The effects of Silibinin on serum LDL, TC, VLDL, HDL, TG, OxLDL levels and to observe the antioxidant effect, TAS and TOS were investigated in experimental obese rat models. It was concluded that Silibinin plays an effective role in lowering TG and LDL levels, increasing HDL levels and decreasing hepatic lipid accumulation in HCD rats at 100 mg/kg dose. The use of Silibinin does not cause antihyperlipidemic effect but has antioxidant effect.

Project Number

18.YL.023

References

  • 1. Sun CJ, McCudden C, Brisson D, Shaw J, Gaudet D, Ooi TC. Calculated Non-HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019; 3;4(1):bvz010.
  • 2. Strilchuk L, Tocci G, Fogacci F, Cicero AFG. An overview of rosuvastatin/ezetimibe association for the treatment of hypercholesterolemia and mixed dyslipidemia. Expert Opin Pharmacother. 2020; 21(5):531-539.
  • 3. Sahle BW, Chen W, Melaku YA, Akombi BJ, Rawal LB, Renzaho AMN. Association of Psychosocial Factors with Risk of Chronic Diseases: A Nationwide Longitudinal Study. Am J Prev Med. 2020; 58(2):e39-e50.
  • 4. Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Current opinion in lipidology. 2016; 27(3):233-241.
  • 5. Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in Atherosclerosis. J Atheroscler Thromb. 2016; 23(2):119-27.
  • 6. Wallace SN, Raible J, Carrier DJ, Vaughn KL, Griffis CL, Clausen EC, Nagarajan S. Pressurized water versus ethanol as a Silybum marianum extraction solvent for inhibition of low-density lipoprotein oxidation mediated by copper and J774 macrophage cells. Can J Physiol Pharmacol. 2007; 85, 894–902.
  • 7. Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother Res. 2018;32(10):1933-1949.
  • 8. Kockx M, Traini M, Kritharides L. Cell-specific production, secretion, and function of apolipoprotein. E. J Mol Med (Berl). 2018; 96(5):361-371.
  • 9. Sahebkar A, Simental-Mendía LE, Pirro M, Banach M, Watts GF, Sirtori C, Al-Rasadi K, Atkin SL. Author Correction: Impact of ezetimibe on plasma lipoprotein (a) concentrations as monotherapy or in combination with statins: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2020; 10(1):2999.
  • 10. Parashar P, Rana P, Dwivedi M, Saraf SA. Dextrose modified bilosomes for peroral delivery: improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res. 2019; 29(3):251-263.
  • 11. Martinelli T, Whittaker A, Benedettelli S, Carboni A, Andrzejewska J. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway. Phytochemistry. 2017; 144:9-18.
  • 12. Albassam AA, Frye RF, Markowitz JS. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem Biol Interact. 2017; 271:24-29.
  • 13. Di Costanzo A, Angelico R. Advanced nanotechnologies for enhancing the bioavailability of silymarin: a state of the art. Peer-reviewed version available at Molecules. 2019; 24:2155.
  • 14. Esmaeil N, Anaraki SB, Gharagozloo M, Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol. 2017; 50:194-201.
  • 15. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37(4): 277-285.
  • 16. Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38(12):1103-1111.
  • 17. Yida Z, Imam MU, Ismail M, Ismail N, Hou Z. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats. Drug Des Devel Ther. 2015; 9:3951–3959.
  • 18. Abdel-Azeem Metwally M, El-Gellal AM, M, El-Sawaisi SM. Effects of Silymarin on Lipid Metabolism in Rats. Word Appl Sci J. 2009; 6 (12):1634-1637.
  • 19. Putakala M, Gujjala S, Nukala S, Bongu SBR, Chintakunta N, Desireddy S. Cardioprotective effect of Phyllanthus amarus against high fructose diet induced myocardial and aortic stress in rat model. Biomed Pharmacother. 2017; 95:1359-1368.
  • 20. Gazák R, Purchartová K, Marhol P, Zivná L, Sedmera P, Valentová K, Kato N, Matsumura H, Kaihatsu K, Kren V. Antioxidant and antiviral activities of silybin fatty acid conjugates. Eur J Med Chem. 2010; 45:1059-1067.
  • 21. Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet J Clin Biochem Nutr. 2018; 62(3):230–237.
  • 22. Méndez-Sánchez N, Dibildox-Martinez M, Sosa-Noguera J, Sánchez-Medal R, Flores-Murrieta FJ. Superior silybin bioavailability of silybin–phosphatidylcholine complex in oily-medium soft-gel capsules versus conventional silymarin tablets in healthy volunteers. Méndez-Sánchez et al. BMC Pharmacol and Toxicol. 2019; 20(1):5.
  • 23. Summerhill VI, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int J Mol Sci. 2019; 20(14):3561.
  • 24. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González Á, Esquivel-Soto J, Esquivel-Chirino C, García-Luna y González-Rubio M, A Gayosso-de-Lucio J, Morales-González JA. Hepatoprotective effect of silymarin. World J Hepatol. 2014; 6(3):144-149.
  • 25. Gobalakrishnan S, Asirvatham SS, Janarthanam V. Effect of Silybin on Lipid Profile in Hypercholesterolaemic Rats. J Clin Diagn Res. 2016; 10(4):FF01-FF05.
  • 26. Skottová N, Vecera R, Urbánek K, Vána P, Walterová D, Cvak L. Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacol Res. 2003; 47(1):17–26.
  • 27. Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet J Clin Biochem Nutr. 2018; 62(3):230–237.
  • 28. Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Anna Bilia AR, Bergonzi MC. Nanostructured Lipid Carriers as Promising Delivery Systems for Plant Extracts: The Case of Silymarin. Appl Sci. 2018; 8(7):1163.
There are 28 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research
Authors

Didem Duman This is me 0000-0002-0900-0336

Abdullah Arpacı 0000-0002-6077-8258

Emre Dirican

Server Bozdoğan 0000-0001-8842-5457

Hamidullah Suphi Bayraktar This is me 0000-0003-3400-9292

Project Number 18.YL.023
Publication Date March 31, 2021
Acceptance Date November 1, 2020
Published in Issue Year 2021 Volume: 46 Issue: 1

Cite

MLA Duman, Didem et al. “Effect of Silibinin on the Hyperlipidemia in Rats Fed With High Cholesterol Diet”. Cukurova Medical Journal, vol. 46, no. 1, 2021, pp. 125-31.