Research Article
BibTex RIS Cite

Deneysel hipertiroidide fiziksel ve vital bulguların ve karnozinin etkisinin değerlendirilmesi

Year 2022, Volume: 47 Issue: 3, 1059 - 1066, 30.09.2022
https://doi.org/10.17826/cumj.1099652

Abstract

Amaç: Bu çalışmada, deneysel hipertiroidinin ve antioksidan özelliği bilinen karnozinin ratların fiziksel ve vital bulgular üzerine etkilerinin araştırılması; ve bu parametreler ile serbest T3 (FT3) seviyeleri arasındaki ilişkinin belirlenmesi amaçlandı.
Gereç ve Yöntem: Ratlar; her biri 12 rattan oluşan (n=12) kontrol (CONT), hipertiroidi 1 (T), hipertiroidi 2 (T-T), Hipertiroidi-1 + Karnozin (T-C), Hipertiroidi-2 + Karnozin (T-TC), Karnozin (C) ve Karnozin + Hipertiroidi-1 (C-T) olmak üzere yedi gruba ayrıldı. Ratlarda hipertiroidi modeli oluşturmak için intraperitoneal (ip) olarak rat ağırlığı/gün başına 300 µg/kg L-tiroksin (L-T4) ve karnozinin etkilerinin belirlenmesi için rat ağırlığı/gün başına 300 µg/kg dozunda karnozin (ip) uygulandı.
Bulgular: 10 ve 20 günlük tiroksin uygulaması ile FT3 düzeylerinin (T:3.640.51pg/mL, T-T: 4.060.91pg/mL) ve vücut sıcaklığının (T:37.10.3oC, T-T: 37.60.3oC) anlamlı şekilde arttığı, vücut ağırlığının (T:240.722.0g, T-T:263.028.7g) azaldığı tespit edildi. Karnozin uygulamasının etkileri incelendiğinde, sadece profilaktik uygulamada FT3 düzeylerinin yükselmesini engellediği, diğer parametreler üzerinde iyileştirici etkisinin olmadığı görüldü.
Sonuç: L-T4 uygulamasıyla gözlenen artmış FT3 düzeylerinin elde edilen fiziksel ve vital bulgularla uyumlu olduğu ancak karnozin uygulamasının hipertiroidik tabloda gözlenen fiziksel bulgular üzerinde beklenen etkileri yansıtmadığı tespit edildi.

Supporting Institution

Research Fund of Erciyes University (Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi)

Project Number

TSD-10-3080

References

  • 1. Mathew P, Rawla P. Hyperthyroidism. [Updated 2019 Mar 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537053/.
  • 2. LiVolsi VA, Baloch ZW. The Pathology of hyperthyroidism. Front Endocrinol (Lausanne) 2018; 3;9:737.
  • 3. Erdamar H, Demirci H, Yaman H, Erbil MK, Yakar T, Sancak B, et al. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med. 2008;46(7):1004-10.
  • 4. Messarah M, Boumendjel A, Chouabia A, Klibet F, Abdennour C, Boulakoud MS, et al. Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp Toxicol Pathol 2010;62(3):301-10.
  • 5. Ghodsi R, Kheirouri S.Carnosine and advanced glycation end products: a systematic review. Amino Acids 2018;50(9):1177-86.
  • 6. Venditti P, Di Meo S. Thyroid hormone- induced oxidative stress. Cell. Mol. Life Sci 2006;63:414-34.
  • 7. Venditti P, Pamplona R, Portero-Otin M, De Rosa R, Di Meo S. Effect of experimental and cold exposure induced hyperthyroidism on H2O2 production and susceptibility to oxidative stress of rat liver mitochondria. Arch Biochem Biophys 2006;447:(1):11-22.
  • 8. Venditti P, De Rosa R, Caldarone G, Di Meo S. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism. Arch Biochem Biophys 2005;442(2):229-37.
  • 9. Moulakakis KG, Poulakou MV, Paraskevas KI, Dontas I, Vlachos IS, Sokolis DP, et al. Hyperthyroidism is associated with increased aortic oxidative DNA damage in a rat model. In vivo 2007; 21: (6): 1021-1026.
  • 10. Huh K, Kwon TH, Kim JS, Park JM. Role of hepatic xanthine oxidase in thyroid dysfunction: Effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res 1998; 21: (3): 236-240.
  • 11. Subudhi U, Das K, Paital B, Bhanja S, Chainy GB. Allevation of enhanced oxidative stres and oxygen consuption of L- thyroxine induced hyperthyroid rat liver mitocondria by vitamin E and curcumin. Chem Biol Interact 2008; 173: (2): 105-114.
  • 12. Romanque P, Cornejo P, Valdes S, Vidla LA. Thyroid hormone administration induces rat liver Nrf2 activation: Suppression by N-Acetylcysteine pretreatment. Thyroid 2011; 21: (6): 655-662.
  • 13. Zaninovich AA, Raices M, Rebagliati I, Ricci C, Hagmüller K. Brown fat thermogenesis in cold- acclimated rats is not abolished by the suppression of thyroid function. Am J Physiol Endocrinol Metab 2002; 283: E496-E502.
  • 14. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501-509.
  • 15. Hwang JH, Kang SY, Kang AN, Jung HW, Jung C, Jeong JH, Park YK. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel. BMC Complement Altern Med 2017;15:17(1):535.
  • 16. Artioli GG, Sale C, Jones RL. Carnosine in health and disease. Eur J Sport Sci 2019;19(1):30-39.
  • 17. Razenkov I, Derwies G, Severin SZ. Zur Frage nach carnosin wirkung auf die magensaft sekretion. Physiol Chem. 1926; 162: 95-99.
  • 18. Mohamadin AM, Hammad LN, El-Bab MF, Abdel Gawad HS. Attenuation of oxidative stress in plasma and tissues of rats with experimentally induced hyperthyroidism by caffeic acid phenylethyl ester. Basic Clin Pharmacol Toxicol 2007;100(2):84-90.
  • 19. Kim SM, Kim SC, Chung IK, Cheon WH, Ku SK. Antioxidant and protective effects of Bupleurum falcatum on the L- thyroxine- induced hyperthyroidism in rats. Evid Based Complement Alternat Med 2012; 2012: 548497.
  • 20. Aragao CN, Souza LL, Cabanelas A, Oliveria KJ, Pazos- Moura CC. Effect of experimental hypo- and hyperthyroidism on serum adinopectin. Metabolism 2007; 56: (1): 6-11.
  • 21. Onur S, Haas V, Bosy-Westphal A, Hauer M, Paul T, Nutzinger D, et al. Ltri-iodothyronine is a major determinant of resting energy expenditure in underweight patients with anorexia nervosa and during weight gain. Eur J Endocrinol 2005;152:179–184.
  • 22. Chiamolera MI, Fredric E. Wondisford, Thyrotropin-Releasing Hormone and the Thyroid Hormone Feedback Mechanism, Endocrinology 2009;150(3):1091–1096.
  • 23. Tanida M, Gotoh H, Taniguchi H, Otani H, Shen J, Nakamura T, et al. Effects of central injection of L-carnosine on sympathetic nerve activity innervating brown adipose tissue and body temperature in rats. Regul Pept 2007; 144: (1-3): 62-71.
  • 24. Deng J, Zhao R, Zhang Z, Wang J. Changes in vasoreactivity of rat large- and medium-sized arteries induced by hyperthyroidism. Exp Toxicol Pathol 2010; 62: (3): 317-322.
  • 25. Fernandes RO, Dreher GJ, Schenkel PC, Fernandes TR, Ribeiro MF, Araujo AS, et al. Redox status and pro-survival/pro-apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011;29(7):617-623.
  • 26. Ghosh G, De K, Maity S, Bandyopadhyay D, Bhattacharya S, Reiter RJ, al. Melatonin protect against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res 2007; 42: 71-82.
  • 27. Heckmann M, Zimmer Hg. Effects of triiodothyronine in spontaneously hypertensive rats. Studies on cardiac metabolism, function, and heart weight. Basic Res Cardiol 1992; 87: 333-343.
  • 28. Craig Ee, Chesley A, Hood Da. Thyroid hormone modifies mitochondrial phenotype by increasing protein import without altering degradation. Am J Physiol 1998;275: C1508-1515.
  • 29. Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism and the Heart. Methodist Debakey Cardiovasc J 2017; 13(2):60-63.
  • 30. Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, et al. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2011; 15: 1339-1354.

Evaluation of physical and vital signs and the effect of carnosine in experimental hyperthyroidism

Year 2022, Volume: 47 Issue: 3, 1059 - 1066, 30.09.2022
https://doi.org/10.17826/cumj.1099652

Abstract

Purpose: This study aims to investigate the effects of experimental hyperthyroidism and carnosine which is known to have antioxidant properties on physical and vital findings in rats, and to determine the relationship between these parameters and free T3 (FT3) levels.
Materials and Methods: Rats were analyzed in 7 groups (each containing 12 animals); control (CONT), hyperthyroidism-1 (T:10-day L-thyroxine (L-T4) administration), hyperthyroidism-2 (T-T: 20-day L-T4 administration), Carnosine (10 day carnosine administration), Hyperthyroidism-1 + Carnosine (T-C), Hyperthyroidism-2 + Carnosine (T-TC), and Carnosine + Hyperthyroidism-1 (C-T). In order to create a hyperthyroidism model, L-thyroxine (L-T4) doses of 300 µg/kg rat weight/day and carnosine doses of 300 µg/kg rat weight/ day were intraperitoneally (ip) administered to the rats.
Results: After 10 and 20 days of thyroxine administration, FT3 levels (T:3.640.51pg/mL, T-T: 4.060.91pg/mL) and body temperature (T:37.10.3oC, T-T: 37.60.3oC), significantly increased while body weight decreased (T:240.722.0g, T-T:263.028.7g). Carnosine administration only prevented the increase of FT3 levels, but had no effect on other parameters.
Conclusion: The increased FT3 levels observed with L-T4 administration were consistent with the physical and vital findings, but carnosine administration did not reflect the expected effects on the physical findings observed in the hyperthyroid condition.

Project Number

TSD-10-3080

References

  • 1. Mathew P, Rawla P. Hyperthyroidism. [Updated 2019 Mar 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537053/.
  • 2. LiVolsi VA, Baloch ZW. The Pathology of hyperthyroidism. Front Endocrinol (Lausanne) 2018; 3;9:737.
  • 3. Erdamar H, Demirci H, Yaman H, Erbil MK, Yakar T, Sancak B, et al. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med. 2008;46(7):1004-10.
  • 4. Messarah M, Boumendjel A, Chouabia A, Klibet F, Abdennour C, Boulakoud MS, et al. Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp Toxicol Pathol 2010;62(3):301-10.
  • 5. Ghodsi R, Kheirouri S.Carnosine and advanced glycation end products: a systematic review. Amino Acids 2018;50(9):1177-86.
  • 6. Venditti P, Di Meo S. Thyroid hormone- induced oxidative stress. Cell. Mol. Life Sci 2006;63:414-34.
  • 7. Venditti P, Pamplona R, Portero-Otin M, De Rosa R, Di Meo S. Effect of experimental and cold exposure induced hyperthyroidism on H2O2 production and susceptibility to oxidative stress of rat liver mitochondria. Arch Biochem Biophys 2006;447:(1):11-22.
  • 8. Venditti P, De Rosa R, Caldarone G, Di Meo S. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism. Arch Biochem Biophys 2005;442(2):229-37.
  • 9. Moulakakis KG, Poulakou MV, Paraskevas KI, Dontas I, Vlachos IS, Sokolis DP, et al. Hyperthyroidism is associated with increased aortic oxidative DNA damage in a rat model. In vivo 2007; 21: (6): 1021-1026.
  • 10. Huh K, Kwon TH, Kim JS, Park JM. Role of hepatic xanthine oxidase in thyroid dysfunction: Effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res 1998; 21: (3): 236-240.
  • 11. Subudhi U, Das K, Paital B, Bhanja S, Chainy GB. Allevation of enhanced oxidative stres and oxygen consuption of L- thyroxine induced hyperthyroid rat liver mitocondria by vitamin E and curcumin. Chem Biol Interact 2008; 173: (2): 105-114.
  • 12. Romanque P, Cornejo P, Valdes S, Vidla LA. Thyroid hormone administration induces rat liver Nrf2 activation: Suppression by N-Acetylcysteine pretreatment. Thyroid 2011; 21: (6): 655-662.
  • 13. Zaninovich AA, Raices M, Rebagliati I, Ricci C, Hagmüller K. Brown fat thermogenesis in cold- acclimated rats is not abolished by the suppression of thyroid function. Am J Physiol Endocrinol Metab 2002; 283: E496-E502.
  • 14. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501-509.
  • 15. Hwang JH, Kang SY, Kang AN, Jung HW, Jung C, Jeong JH, Park YK. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel. BMC Complement Altern Med 2017;15:17(1):535.
  • 16. Artioli GG, Sale C, Jones RL. Carnosine in health and disease. Eur J Sport Sci 2019;19(1):30-39.
  • 17. Razenkov I, Derwies G, Severin SZ. Zur Frage nach carnosin wirkung auf die magensaft sekretion. Physiol Chem. 1926; 162: 95-99.
  • 18. Mohamadin AM, Hammad LN, El-Bab MF, Abdel Gawad HS. Attenuation of oxidative stress in plasma and tissues of rats with experimentally induced hyperthyroidism by caffeic acid phenylethyl ester. Basic Clin Pharmacol Toxicol 2007;100(2):84-90.
  • 19. Kim SM, Kim SC, Chung IK, Cheon WH, Ku SK. Antioxidant and protective effects of Bupleurum falcatum on the L- thyroxine- induced hyperthyroidism in rats. Evid Based Complement Alternat Med 2012; 2012: 548497.
  • 20. Aragao CN, Souza LL, Cabanelas A, Oliveria KJ, Pazos- Moura CC. Effect of experimental hypo- and hyperthyroidism on serum adinopectin. Metabolism 2007; 56: (1): 6-11.
  • 21. Onur S, Haas V, Bosy-Westphal A, Hauer M, Paul T, Nutzinger D, et al. Ltri-iodothyronine is a major determinant of resting energy expenditure in underweight patients with anorexia nervosa and during weight gain. Eur J Endocrinol 2005;152:179–184.
  • 22. Chiamolera MI, Fredric E. Wondisford, Thyrotropin-Releasing Hormone and the Thyroid Hormone Feedback Mechanism, Endocrinology 2009;150(3):1091–1096.
  • 23. Tanida M, Gotoh H, Taniguchi H, Otani H, Shen J, Nakamura T, et al. Effects of central injection of L-carnosine on sympathetic nerve activity innervating brown adipose tissue and body temperature in rats. Regul Pept 2007; 144: (1-3): 62-71.
  • 24. Deng J, Zhao R, Zhang Z, Wang J. Changes in vasoreactivity of rat large- and medium-sized arteries induced by hyperthyroidism. Exp Toxicol Pathol 2010; 62: (3): 317-322.
  • 25. Fernandes RO, Dreher GJ, Schenkel PC, Fernandes TR, Ribeiro MF, Araujo AS, et al. Redox status and pro-survival/pro-apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011;29(7):617-623.
  • 26. Ghosh G, De K, Maity S, Bandyopadhyay D, Bhattacharya S, Reiter RJ, al. Melatonin protect against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res 2007; 42: 71-82.
  • 27. Heckmann M, Zimmer Hg. Effects of triiodothyronine in spontaneously hypertensive rats. Studies on cardiac metabolism, function, and heart weight. Basic Res Cardiol 1992; 87: 333-343.
  • 28. Craig Ee, Chesley A, Hood Da. Thyroid hormone modifies mitochondrial phenotype by increasing protein import without altering degradation. Am J Physiol 1998;275: C1508-1515.
  • 29. Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism and the Heart. Methodist Debakey Cardiovasc J 2017; 13(2):60-63.
  • 30. Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, et al. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2011; 15: 1339-1354.
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Fatma Dağlı 0000-0003-2911-897X

Inayet Gunturk 0000-0002-8299-1359

Gönül Şeyda Seydel 0000-0001-9317-0719

Cevat Yazıcı 0000-0003-0625-9542

Project Number TSD-10-3080
Publication Date September 30, 2022
Acceptance Date July 17, 2022
Published in Issue Year 2022 Volume: 47 Issue: 3

Cite

MLA Dağlı, Fatma et al. “Evaluation of Physical and Vital Signs and the Effect of Carnosine in Experimental Hyperthyroidism”. Cukurova Medical Journal, vol. 47, no. 3, 2022, pp. 1059-66, doi:10.17826/cumj.1099652.