Letter to Editor
BibTex RIS Cite

Tanıların geleceği: radyolojide yapay zeka ve gelişen teknolojiler

Year 2024, Volume: 49 Issue: 3, 844 - 845, 30.09.2024
https://doi.org/10.17826/cumj.1377100

Abstract

Yapay zekanın radyoloji üzerindeki dönüştürücü etkisi, acil vakalardan kronik hastalıklara ve onkolojik durumlara kadar geniş bir yelpazeye yayılmaktadır. Belgelenen başarılar, bu alanda devam eden araştırmaların kritik rolünün altını çizmekte, teşhis doğruluğunu artırma, hayat kurtarma ve sağlık çalışanlarına daha iyi hizmetler sunma konusundaki büyük önemini vurgulamaktadır

Ethical Statement

The procedure followed institutional ethics and complied with the WMA Declaration of Helsinki for medical research involving human subjects.

Supporting Institution

No funding was obtained for this study.

Thanks

Not applicable.

References

  • Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.
  • Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial intelligence in radiology: a call for thoughtful application. Clin Transl Sci. 2020;13:216.
  • Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020; 123:108774.
  • Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022;40:1095-110.
  • Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron JS et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer. 2018;4:30.
  • Cellina M, Cè M, Irmici G, Ascenti V, Caloro E, Bianchi L et al. Artificial intelligence in emergency radiology: where are we going? Diagnostics. 2022;12:3223.
  • Stahl BC, Antoniou J, Ryan M, Macnish K, Jiya T. Organisational responses to the ethical issues of artificial intelligence. AI Soc. 2022;37:23-37.
  • Coughlin S, Roberts D, O’Neill K, Brooks P. Looking to tomorrow’s healthcare today: a participatory health perspective. Intern Med J. 2018;48:92-6.

The future of diagnosis: artificial intelligence and advancing technologies in radiology

Year 2024, Volume: 49 Issue: 3, 844 - 845, 30.09.2024
https://doi.org/10.17826/cumj.1377100

Abstract

The transformative impact of AI on radiology extends across a broad spectrum from emergency cases to chronic diseases and oncological conditions. The documented successes underscore the critical role of ongoing research in this field, emphasizing its paramount importance in enhancing diagnostic accuracy, saving lives, and providing improved services to healthcare professionals

References

  • Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.
  • Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial intelligence in radiology: a call for thoughtful application. Clin Transl Sci. 2020;13:216.
  • Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020; 123:108774.
  • Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022;40:1095-110.
  • Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron JS et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer. 2018;4:30.
  • Cellina M, Cè M, Irmici G, Ascenti V, Caloro E, Bianchi L et al. Artificial intelligence in emergency radiology: where are we going? Diagnostics. 2022;12:3223.
  • Stahl BC, Antoniou J, Ryan M, Macnish K, Jiya T. Organisational responses to the ethical issues of artificial intelligence. AI Soc. 2022;37:23-37.
  • Coughlin S, Roberts D, O’Neill K, Brooks P. Looking to tomorrow’s healthcare today: a participatory health perspective. Intern Med J. 2018;48:92-6.
There are 8 citations in total.

Details

Primary Language English
Subjects Diagnostic Radiography
Journal Section Letter to the Editor
Authors

Ahmet Bozer 0000-0002-0467-741X

Publication Date September 30, 2024
Submission Date October 16, 2023
Acceptance Date January 20, 2024
Published in Issue Year 2024 Volume: 49 Issue: 3

Cite

MLA Bozer, Ahmet. “The Future of Diagnosis: Artificial Intelligence and Advancing Technologies in Radiology”. Cukurova Medical Journal, vol. 49, no. 3, 2024, pp. 844-5, doi:10.17826/cumj.1377100.