Research Article
BibTex RIS Cite

Biofilm Formation Capacity of Listeria Standard Strains Depended On Time

Year 2017, Volume: 38 Issue: 2, 321 - 328, 24.04.2017
https://doi.org/10.17776/cumuscij.289956

Abstract

In nature, microorganism have developed a variety of
mechanisms of resistance to environmental stresses, such as the formation of biofilms.
Biofilms are sessile organizations of microbial cells with a strong adherence
to surfaces. Biofilm-associated cells are protected by an extracellular matrix
consisting of exopolysaccharides, proteins and DNA In food industry, biofilm
formation is undesirable for hygienic and safety reasons due to the possible
attachment of food spoilage or pathogenic microorganisms to food or food
surfaces. Foodborne pathogenic microorganism have caused
the loss of millions dollars in the food industry each year. Listeria
monocytogenes
, which is emerged
as an important foodborne pathogen in the latter part of the 20th century, is
widely found in food, environmental and clinical samples.
Listeria
monocytogenesis a Gram-positive bacterium thatis responsible for causing the
foodborne disease listeriosis humans. Several studies have demonstrated that
Listeria species is able to form biofilms and produce extracellular polymeric
substances on various food contacts. Since biofilms are more resistant to
antimicrobial agents, the capability of Listeria species to form biofilms on
different surfaces poses a major concern for the food industry.



The purpose of the present study was to investigate
biofilm formation capacity of Listeria standard strains depended on time and to
contribute literature. For the investigation, was used 4 standard Listeria
stains which are belong to 3 different Listeria species. Used cultures are
L. monocytogenes ATCC 7644, L. monocytogenes ATCC 19111,
Listeria ivanovii
ATCC 19119 and Listeria
innocua
6a33090
. Biofilm
formation were determined in 96-well tissue culture plates with a microtiter
plate assay (MP) described by Christensen et al. with modifications. After the
6, 12 and 24 hour incubation was observed weak biofilm formation whereas
moderate biofilm formation was revealed for all standard strains after 48 hour
incubation. Accordingly this, as a result of the investigation to relationship
between biofilm formation and time, were observed that increasing to biofilm
formation after 48 hour incubation.

References

  • [1]. Bell C. and Kyriakides, A. LISTERIA, A practical approach to the organism and its control in food. 2 th ed. Oxford, UK: Blackwell Publishing; 2005: chap 1.
  • [2]. Wagner M., McLauchlin J. Biology. In Liu D. (Eds). Handbook of Listeria monocytogenes. New York, USA: CRC Press; 2008: 3-25.
  • [3]. Gasanov U., Hughes, D., Hansbro, P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiology Reviews 2005; 29: 851-75.
  • [4]. Schlech W.F. Foodborne Listeriosis. Clinical Infectious Diseases 2000; 31: 770-5.
  • [5]. Lorber B. Listeriosis. In Goldfine H., Shen H. (Eds). Listeria monocytogenes, Pathogenesis and Host Response. New York, USA: Springer; 2007: 13-31.
  • [6]. Painter J., Slutsker L., Listeriosis in Human. In Ryser E.T., Marth E.H. (Eds). Listeria, Listeriosis and Food Safety. New York, USA: CRC Press; 2007: 85-109.
  • [7]. Özçelik N. Listeria monocytogenes’ in tanımı, bulunuşu ve neden olduğu hastalıklar. SDÜ Tıp Fakültesi Dergisi 1994; 1(1): 33-6.
  • [8]. O’Connor L., O’Leary M., Leonard N., Godinho M., O’Reily C., Coffey L., Egan, J., O’Mahony, R., The characterization of Listeria spp. isolated from food products and the food-processing environment. Letters in Applied Microbiology 2010; 51: 490-8.
  • [9]. Slama R.B., Kouidhi B., Zmanta T., Chaieb K., Bakhrouf A., Anti-Listerial and anti-biofilm activities of potential probiotic Lactobacillus strains isolated from Tunusian traditional fermented food. Journal of Food Safety 2013; 33: 8-16.
  • [10]. Guerrieri E., de Niederhäusern S., Messi P., Sabia C., Iseppi R., Anacarso I., Bond, M., Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model, Food Control 2009; 20(9): 861–5.
  • [11]. Bacteriological Analytical Manual (FDA-BAM), Detection and Enumaration of Listeria monocytogenes in Food. Available at: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm114664.htm
  • [12]. Esteban J., Molina-Manso D., Spiliopoulou I., Cordero-Ampuero J., Fernández-Roblas R., Foka A., Gómez-Barrena E., Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthopaedica 2010; 81: 674–9.
  • [13]. Landeta G., Curiel J.A., Carrascosa A.V., Muñoz R., de las Rivas B., Technological and Safety Properties of Lactic Acid Bacteria Isolated from Spanish Dry-Cured Sausages. Meat Science 2013; 95: 272-80.
  • [14]. Guidone A., Zotta T., Ross R.P., Stanton C., Rea M.C., Parente E., Ricciardi A., Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT-Food Science and Technology 2014; 56: 69–76.
  • [15]. Szczepanski S., Lipski A., Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 2014; 36: 224-9.
  • [16]. Srey S., Jahid I.K., Ha S-D., Biofilm formation in food industries: A food safety concern. Food Control 2013; 31: 572–85.
  • [17]. Ceri H, Olson M.E., Stremick C., Read R.R., Morck D., Buret A., The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J ClinMicrobiol 1999; 37: 1771-6.
  • [18]. Harveya J., Keenana K.P., Gilmoura A., Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology 2007; 24: 380–92.
  • [19]. Sambanthamoorthy K., Feng X., Patel R., Patel S., Paranavitana C., Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology 2014; 14: 197-205.
  • [20]. Borucki MK., Peppin JD., White D., Loge F., Douglas R., Call DR., Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 2003; 69: 7336–42.
  • [21]. Stepanović S., Cirković I., Ranin L., Svabić-Vlahović M., Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 2004; 38: 428-32.
  • [22]. Doijad SP., Barbuddhe SB., Garg S., Poharkar KV., Kalorey DR., Kurkure NV., Rawool DB., Chakraborty T., Biofilm-forming abilities of Listeria monocytogenes serotypes ısolated from different sources. PLoS One 2015; 11: e0137046.
  • [23]. Reis-Teixeira FB., Alves VF., de Martinis EC., Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Braz J Microbiol 2017; 8382(16): 30428-2.
  • [24]. Pan Y, Breidt Jr F, Kathariou S, Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing. Environment Appl Environ Microbiology 2006; 72(12): 7711–7.

Listeria Standart Suşlarının Zamana Bağlı Biyofilm Oluşturma Kapasiteleri

Year 2017, Volume: 38 Issue: 2, 321 - 328, 24.04.2017
https://doi.org/10.17776/cumuscij.289956

Abstract

Mikroorganizmalar doğada çevresel stres koşullarına
karşı biyofilm formasyonu gibi çeşitli direnç mekanizmaları
geliştirmektedirler. Biyofilmler mikrobiyal hücrelerin yüzeylere güçlü
adhezyonu sonucu oluşan sesil organizasyonlardır. Biyofilm ile ilişkili
hücreler ekzopolisakkarit, protein ve DNA’dan oluşan ekstraselüler matriks
tarafından korunmaktadır. Gıda endüstrisinde, biyofilm oluşumu çürükçül ve
patojenik mikroorganizmaların gıda yada gıda yüzeylerine tutunma olasılığından
dolayı hijyen ve güvenlik sebepleri ile istenmemektedir. Gıda kökenli patojen
mikroorganizmalar, gıda endüstrisinde her yıl önemli ekonomik kayıplara sebep
olmaktadırlar. Gıda patojenleri arasında oldukça önemli sayılan, yirminci
yüzyılın ikinci yarısında ortaya çıkmış olan Listeria monocytogenes gıda, çevresel ve klinik örneklerde yaygın
olarak bulunmaktadır. Gram pozitif bir bakteri olan L. monocytogenes insanlarda gıda kökenli hastalık olan listeriosis
oluşumundan sorumludur. Birçok çalışma Listeria türlerinin çeşitli gıdalar ile
temasta biyofilm oluşturduğunu ve ekstraselüler polimerik bileşikleri
ürettiğini göstermektedir. Biyofilmler antimikrobiyal ajanlara karşı daha
dirençli oldukları için Listeria türlerinin farklı yüzeylerde biyofilm
oluşturma kapasitesi gıda endüstrisi için büyük önem taşımaktadır.



Çalışmamızda Listeria standart suşlarının zamana bağlı
biyofilm oluşturma kapasitelerinin araştırılması ve konuyla ilgili literatüre
katkı sağlanması hedeflenmiştir. Çalışma için 3 farklı Listeria türüne ait 4
standart suş kullanılmıştır. Kullanılan kültürler L. monocytogenes ATCC 7644, L.
monocytogenes
ATCC 19111, Listeria
ivanovii
ATCC 19119 ve Listeria
innocua
6a33090dur. Biyofilm oluşumu 96 kuyucuklu plaklar içerisinde,
Christensen ve arkadaşları tarafından önerilen mikroplak metodu modifiye
edilerek araştırılmıştır. Çalışmada, 6, 12 ve 24 saatlik inkübasyon sonrasında
zayıf biyofilm oluşumu gözlemlenirken, 48 saatlik inkübasyon sonunda bütün
standart strainlerde orta dereceli biyofilm oluşumu tespit edilmiştir. Buna
bağlı olarak, biyofilm oluşumu ve zaman arasındaki ilişkinin incelenmesi
sonucunda, 48 saatlik inkübasyondan sonra biyofilm oluşumunda artış
gözlemlenmiştir.

References

  • [1]. Bell C. and Kyriakides, A. LISTERIA, A practical approach to the organism and its control in food. 2 th ed. Oxford, UK: Blackwell Publishing; 2005: chap 1.
  • [2]. Wagner M., McLauchlin J. Biology. In Liu D. (Eds). Handbook of Listeria monocytogenes. New York, USA: CRC Press; 2008: 3-25.
  • [3]. Gasanov U., Hughes, D., Hansbro, P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiology Reviews 2005; 29: 851-75.
  • [4]. Schlech W.F. Foodborne Listeriosis. Clinical Infectious Diseases 2000; 31: 770-5.
  • [5]. Lorber B. Listeriosis. In Goldfine H., Shen H. (Eds). Listeria monocytogenes, Pathogenesis and Host Response. New York, USA: Springer; 2007: 13-31.
  • [6]. Painter J., Slutsker L., Listeriosis in Human. In Ryser E.T., Marth E.H. (Eds). Listeria, Listeriosis and Food Safety. New York, USA: CRC Press; 2007: 85-109.
  • [7]. Özçelik N. Listeria monocytogenes’ in tanımı, bulunuşu ve neden olduğu hastalıklar. SDÜ Tıp Fakültesi Dergisi 1994; 1(1): 33-6.
  • [8]. O’Connor L., O’Leary M., Leonard N., Godinho M., O’Reily C., Coffey L., Egan, J., O’Mahony, R., The characterization of Listeria spp. isolated from food products and the food-processing environment. Letters in Applied Microbiology 2010; 51: 490-8.
  • [9]. Slama R.B., Kouidhi B., Zmanta T., Chaieb K., Bakhrouf A., Anti-Listerial and anti-biofilm activities of potential probiotic Lactobacillus strains isolated from Tunusian traditional fermented food. Journal of Food Safety 2013; 33: 8-16.
  • [10]. Guerrieri E., de Niederhäusern S., Messi P., Sabia C., Iseppi R., Anacarso I., Bond, M., Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model, Food Control 2009; 20(9): 861–5.
  • [11]. Bacteriological Analytical Manual (FDA-BAM), Detection and Enumaration of Listeria monocytogenes in Food. Available at: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm114664.htm
  • [12]. Esteban J., Molina-Manso D., Spiliopoulou I., Cordero-Ampuero J., Fernández-Roblas R., Foka A., Gómez-Barrena E., Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthopaedica 2010; 81: 674–9.
  • [13]. Landeta G., Curiel J.A., Carrascosa A.V., Muñoz R., de las Rivas B., Technological and Safety Properties of Lactic Acid Bacteria Isolated from Spanish Dry-Cured Sausages. Meat Science 2013; 95: 272-80.
  • [14]. Guidone A., Zotta T., Ross R.P., Stanton C., Rea M.C., Parente E., Ricciardi A., Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT-Food Science and Technology 2014; 56: 69–76.
  • [15]. Szczepanski S., Lipski A., Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 2014; 36: 224-9.
  • [16]. Srey S., Jahid I.K., Ha S-D., Biofilm formation in food industries: A food safety concern. Food Control 2013; 31: 572–85.
  • [17]. Ceri H, Olson M.E., Stremick C., Read R.R., Morck D., Buret A., The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J ClinMicrobiol 1999; 37: 1771-6.
  • [18]. Harveya J., Keenana K.P., Gilmoura A., Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology 2007; 24: 380–92.
  • [19]. Sambanthamoorthy K., Feng X., Patel R., Patel S., Paranavitana C., Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology 2014; 14: 197-205.
  • [20]. Borucki MK., Peppin JD., White D., Loge F., Douglas R., Call DR., Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 2003; 69: 7336–42.
  • [21]. Stepanović S., Cirković I., Ranin L., Svabić-Vlahović M., Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 2004; 38: 428-32.
  • [22]. Doijad SP., Barbuddhe SB., Garg S., Poharkar KV., Kalorey DR., Kurkure NV., Rawool DB., Chakraborty T., Biofilm-forming abilities of Listeria monocytogenes serotypes ısolated from different sources. PLoS One 2015; 11: e0137046.
  • [23]. Reis-Teixeira FB., Alves VF., de Martinis EC., Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Braz J Microbiol 2017; 8382(16): 30428-2.
  • [24]. Pan Y, Breidt Jr F, Kathariou S, Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing. Environment Appl Environ Microbiology 2006; 72(12): 7711–7.
There are 24 citations in total.

Details

Subjects Engineering
Journal Section Special
Authors

Uğur Tutar

Emine Dinçer

Publication Date April 24, 2017
Published in Issue Year 2017 Volume: 38 Issue: 2

Cite

APA Tutar, U., & Dinçer, E. (2017). Biofilm Formation Capacity of Listeria Standard Strains Depended On Time. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 38(2), 321-328. https://doi.org/10.17776/cumuscij.289956
AMA Tutar U, Dinçer E. Biofilm Formation Capacity of Listeria Standard Strains Depended On Time. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. April 2017;38(2):321-328. doi:10.17776/cumuscij.289956
Chicago Tutar, Uğur, and Emine Dinçer. “Biofilm Formation Capacity of Listeria Standard Strains Depended On Time”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38, no. 2 (April 2017): 321-28. https://doi.org/10.17776/cumuscij.289956.
EndNote Tutar U, Dinçer E (April 1, 2017) Biofilm Formation Capacity of Listeria Standard Strains Depended On Time. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38 2 321–328.
IEEE U. Tutar and E. Dinçer, “Biofilm Formation Capacity of Listeria Standard Strains Depended On Time”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 321–328, 2017, doi: 10.17776/cumuscij.289956.
ISNAD Tutar, Uğur - Dinçer, Emine. “Biofilm Formation Capacity of Listeria Standard Strains Depended On Time”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38/2 (April 2017), 321-328. https://doi.org/10.17776/cumuscij.289956.
JAMA Tutar U, Dinçer E. Biofilm Formation Capacity of Listeria Standard Strains Depended On Time. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38:321–328.
MLA Tutar, Uğur and Emine Dinçer. “Biofilm Formation Capacity of Listeria Standard Strains Depended On Time”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, 2017, pp. 321-8, doi:10.17776/cumuscij.289956.
Vancouver Tutar U, Dinçer E. Biofilm Formation Capacity of Listeria Standard Strains Depended On Time. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38(2):321-8.