Research Article
BibTex RIS Cite

Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures

Year 2017, Volume: 38 Issue: 2, 245 - 255, 24.04.2017
https://doi.org/10.17776/cumuscij.297820

Abstract

In
prosthodontics, to increase the bonding of metals with porcelain by several
means including laser surface treatments is still an important research topic.
The current study was undertaken to evaluate the influence of surface treatment
with Ho:YAG, Er:YAG, and Nd:YAG lasers on the shear bond strength (SBS) of low
fusion dental porcelain to titanium and zirconium oxide substructures. Titanium
(n=70) and zirconium oxide (n=70) specimens were categorized into 7 study
groups (n=10): sandblasting, Er:YAG 1.5W and 2.5W, Nd:YAG 1.5W and 2.5W, and
Ho:YAG 4W and 10W. Their surface morphology was examined with under scanning
electron microscopy (SEM) after surface treatment. After application of low
fusion dental porcelain, the SBS test was performed applying a universal
testing machine. In the titanium specimens, the SBSs of the Nd:YAG laser 2.5W
and 1.5W were significantly higher than those of the sandblasting and other
lasers, respectively (p<0.05); In the zirconium oxide specimens, the SBSs of
the sandblasting, Nd:YAG 1.5W and Nd:YAG 2.5W lasers were significantly higher
than those of the other lasers, respectively (p<0.05); In the titanium
specimens, Er:YAG 1.5W, Nd:YAG 2.5W, and Ho:YAG 10W lasers provided
significantly higher SBSs compared to those in the zirconium oxide specimens
(p<0.05). To increase SBS of low fusion porcelain with titanium and
zirconium oxide substructures, Nd:YAG laser is more successful compared to
Er:YAG and Ho:YAG lasers.
The laser applications provide different SBS results
although there are no obvious differences among their surfaces by SEM; this
requires further research in order to clarify the mechanism of these
differences.

References

  • [1]. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011 Jan;27(1):83-96.
  • [2]. Larsson C. Zirconium dioxide based dental restorations. Studies on clinical performance and fracture behaviour. Swed Dent J Suppl. 2011;(213):9-84.
  • [3]. Pjetursson BE, Brägger U, Lang NP, Zwahlen M. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res. 2007 Jun;18 Suppl 3:97-113.
  • [4]. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 Mar;24(3):299-307. Epub 2007 Jul 19. [5]. Graham JD, Johnson A, Wildgoose DG, Shareef MY, Cannavina G. The effect of surface treatments on the bond strength of a nonprecious alloy-ceramic interface. Int J Prosthodont. 1999 Jul-Aug;12(4):330-4.
  • [6]. Deepak K, Ahila S C, Muthukumar B, Vasanthkumar M. Comparative evaluation of effect of laser on shear bond strength of ceramic bonded with two base metal alloys: An in-vitro study. Indian J Dent Res 2013;24:610-5
  • [7]. Komine, F.a, Strub, J.R.b, Matsumura, H.a Bonding between layering materials and zirconia frameworks (Review) Japanese Dental Science Review Volume 48, Issue 2, August 2012, Pages 153-161
  • [8]. Guo, L.ab, Wu, H.b, Liu, X.cd, Zhu, Y.a, Gao, J.b, Guo, T.c Effect of fluoride corrosion on the bonding strength of Ti-porcelain under static loads (Article) Materials Letters Volume 63, Issue 28, 30 November 2009, Pages 2486-2488
  • [9]. Elsaka SE, Swain MV. Effect of surface treatments on adhesion of low-fusing porcelain to titanium as determined by strain energy release rate. Dent Mater. 2011 Dec;27(12):1213-20.
  • [10]. Haselton DR, Diaz-Arnold AM, Dunne JT Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J Prosthet Dent. 2001 Nov;86(5):526-31.
  • [11]. de Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater. 2009 Feb;25(2):172-9.
  • [12]. Atsü S, Berksun S. Bond strength of three porcelains to two forms of titanium using two firing atmospheres. J Prosthet Dent. 2000 Nov;84(5):567-74.
  • [13]. Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics of porcelain fused to milled titanium. Dent Mater. 1994 Mar;10(2):134-40.
  • [14]. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008 Oct;24(10):1400-4.
  • [15]. Kelly JR, Giordano R, Pober R, Cima MJ. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont 1990;3(5):430-440.
  • [16]. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater. 2009 Mar;25(3):383-91.
  • [17]. al-Shehri SA, Mohammed H, Wilson CA. Influence of lamination on the flexure strength of dental castable ceramic. J Prosthet Dent 1996; 76: 23-28.
  • [18]. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CAD-CAM produced all-ceramic crowns. Dent Mater 2005; 21: 242-251.
  • [19]. Reyes MJ, Oshida Y, Andres CJ, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
  • [20]. Guo, L.a, Tian, J.a, Wu, J.a, Li, B.b, Zhu, Y.a, Xu, C.a, Qiang, Y.a Effect of surface texturing on the bonding strength of titanium-porcelain (Article) Materials Letters Volume 131, 15 September 2014, Pages 321-323
  • [21]. Guo, L.ab, Liu, X.cd, Gao, J.b, Yang, J.b, Guo, T.c, Zhu, Y.a Effect of surface modifications on the bonding strength of titanium-porcelain (Article) Materials and Manufacturing Processes Volume 25, Issue 8, July 2010, Pages 710-717
  • [22]. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont. 2008 Jul;17(5):401-8.
  • [23]. Bagby M, Marshall SJ, Marshall GW Jr. Metal ceramic compatibility: a review of the literature. J Prosthet Dent. 1990 Jan;63(1):21-5.
  • [24]. Salazar M SM, Pereira SM, Ccahuana V VZ, Passos SP, Vanderlei AD, Pavanelli CA, Bottino MA. Shear bond strength between metal alloy and a ceramic system, submitted to different thermocycling immersion times. Acta Odontol Latinoam. 2007;20(2):97-102.
  • [25]. R. Van Noort Introduction to Dental Materials (3rded.)Elsevier (2007)
  • [26]. Liu PR, Essig ME. Panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent. 2008 Oct;29(8):482, 484, 486-8 passim.
  • [27]. Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274-80. Epub 2011 May 20.
  • [28]. Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996 Jun;27(6):401-8.
  • [29]. Pröbster L, Geis-Gerstorfer J, Simonis A, Setz J, Weber H. [Titanium--present status of a new dental material].[Article in German]. Dent Labor (Munch). 1991 Aug;39(8):1073-8.
  • [30]. Reppel PD, Walter M, Bo ̈ning K. Metallkeramischer zahnerstaz aus titan. Deutsche Zahnarztliche Zeitschrift, 1992;47(8):524 – 526.
  • [31]. Chai J, McGivney GP, Munoz CA, Rubenstein JE. A multicenter longitudinal clinical trial of a new system for restorations. J Prosthet Dent. 1997 Jan;77(1):1-11.
  • [32]. Walter M, Reppel PD, Böning K, Freesmeyer WB. Six-year follow-up of titanium and high-gold porcelain-fused-to-metal fixed partial dentures. J Oral Rehabil. 1999 Feb;26(2):91-6.
  • [33]. Lövgren R, Andersson B, Carlsson GE, Odman P. Prospective clinical 5-year study of ceramic-veneered titanium restorations with the Procera system. J Prosthet Dent. 2000 Nov;84(5):514-21.
  • [34]. Inagaki R, Kikuchi M, Takahashi M, Takada Y, Sasaki K. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system. Dent Mater J. 2015;34(5):679-85.
  • [35]. Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015 Feb;30(2):561-6.
  • [36]. ISO 963:1999 metal–ceramic dental restorative systems International Organization for Standardization, Geneva (1999)
  • [37]. Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014 Jul;29(4):1329-37. [38]. Mahmoodi N, Hooshmand T, Heidari S, Khoshro K. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements. Lasers Med Sci. 2016 Feb;31(2):205-11.
  • [39]. Erdur EA, Basciftci FA. Effect of Ti:Sapphire-femtosecond laser on the surface roughness of ceramics. Lasers Surg Med. 2015 Dec;47(10):833-8.
  • [40]. Gorler O, Dogan DO, Ulgey M, Goze A, Hubbezoğlu I, Zan R, Ozdemir AK. The Effects of Er:YAG, Nd:YAG, and Ho:YAG Laser Surface Treatments to Acrylic Resin Denture Bases on the Tensile Bond Strength of Silicone-Based Resilient Liners. Photomed Laser Surg. 2015 Aug;33(8):409-14.
  • [41]. Patzelt SB, Spies BC, Kohal RJ. CAD/CAM-fabricated implant-supported restorations: a systematic review. Clin Oral Implants Res. 2015 Sep;26 Suppl 11:77-85.
  • [42]. Murray AK, Attrill DC, Dickinson MR. The effects of XeCl laser etching of Ni-Cr alloy on bond strengths to composite resin: a comparison with sandblasting procedures. Dent Mater. 2005 Jun;21(6):538-44.

Zirkonyum Oksit ve Titanyum Metal Alt Yapıların SBS Üzerine Farklı Lazer Yüzey Uygulamalarının Etkisi

Year 2017, Volume: 38 Issue: 2, 245 - 255, 24.04.2017
https://doi.org/10.17776/cumuscij.297820

Abstract

Protetik
diş tedavisinde lazer yüzey uygulamalarını da içeren birçok yöntem, porselen
alt yapı ile metalin bağlantısını arttırmak için halen önemli bir araştırma konusudur.
Çalışma; titanyum ve zirkonyum oksit alt yapılara uygulanan düşük ısı
porseleninin makaslama bağlantı dayanımına (SBS); Ho:YAG, Er:YAG ve Nd:YAG
lazer ile yüzey şartlandırmalarının etkisini geliştirmeyi amaçlamıştır. Titanyum
(n=70) ve zirkonyum oksit (n=70) örnekler 7 çalışma grubuna ayrılmıştır (n=10):
Kumlama, Er:YAG 1.5 W ve 2.5 W, Nd:YAG 1.5 W ve Er:YAG 2.5 W, ve Ho:YAG 4W VE
10 W. Yüzey morfolojileri, şartlandırma sonrasında taramalı elektron mikroskobu
(SEM) altında incelenmiştir. Dental düşük ısı porseleninin uygulanmasından
sonra SBS testi universal test makinesi kullanılarak yapılmıştır.  Titanyum örneklerde Nd:YAG lazer 2.5 W ve 1.5
W SBS sırasıyla kumlama ve diğer lazerlerden önemli ölçüde yüksektir
(p<0.05). Zirkonyum oksit örneklerde Kumlama, Nd:YAG 1.5W and Nd:YAG 2.5W
lazerler sırasıyla diğer lazerlerden önemli ölçüde yüksektir.  Titanyum örneklerde Er:YAG 1.5W, Nd:YAG 2.5W,
ve Ho:YAG 10W lazer zirkonyum oksit örnekler ile karşılaştırıldığı zaman
SBS  önemli derecede üstünlük sağlamıştır
(p<0.05). Titanyum ve zirkonyum oksit alt yapılar ile düşük ısı porseleninin
SBS artırmak için Nd:YAG lazer Er:YAG ve Ho.YAG ile karşılaştırıldığı zaman
daha başarılıdır. SEM vasıtasıyla yüzeyleri arasında belirgin bir fark
olmamasına rağmen lazer uygulamaları farklı SBS sonuçları sağlamıştır ; bu
durum bu farkların işleyişini açıklamak için daha fazla araştırmayı
gerektirmektedir.

References

  • [1]. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011 Jan;27(1):83-96.
  • [2]. Larsson C. Zirconium dioxide based dental restorations. Studies on clinical performance and fracture behaviour. Swed Dent J Suppl. 2011;(213):9-84.
  • [3]. Pjetursson BE, Brägger U, Lang NP, Zwahlen M. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res. 2007 Jun;18 Suppl 3:97-113.
  • [4]. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 Mar;24(3):299-307. Epub 2007 Jul 19. [5]. Graham JD, Johnson A, Wildgoose DG, Shareef MY, Cannavina G. The effect of surface treatments on the bond strength of a nonprecious alloy-ceramic interface. Int J Prosthodont. 1999 Jul-Aug;12(4):330-4.
  • [6]. Deepak K, Ahila S C, Muthukumar B, Vasanthkumar M. Comparative evaluation of effect of laser on shear bond strength of ceramic bonded with two base metal alloys: An in-vitro study. Indian J Dent Res 2013;24:610-5
  • [7]. Komine, F.a, Strub, J.R.b, Matsumura, H.a Bonding between layering materials and zirconia frameworks (Review) Japanese Dental Science Review Volume 48, Issue 2, August 2012, Pages 153-161
  • [8]. Guo, L.ab, Wu, H.b, Liu, X.cd, Zhu, Y.a, Gao, J.b, Guo, T.c Effect of fluoride corrosion on the bonding strength of Ti-porcelain under static loads (Article) Materials Letters Volume 63, Issue 28, 30 November 2009, Pages 2486-2488
  • [9]. Elsaka SE, Swain MV. Effect of surface treatments on adhesion of low-fusing porcelain to titanium as determined by strain energy release rate. Dent Mater. 2011 Dec;27(12):1213-20.
  • [10]. Haselton DR, Diaz-Arnold AM, Dunne JT Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J Prosthet Dent. 2001 Nov;86(5):526-31.
  • [11]. de Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater. 2009 Feb;25(2):172-9.
  • [12]. Atsü S, Berksun S. Bond strength of three porcelains to two forms of titanium using two firing atmospheres. J Prosthet Dent. 2000 Nov;84(5):567-74.
  • [13]. Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics of porcelain fused to milled titanium. Dent Mater. 1994 Mar;10(2):134-40.
  • [14]. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008 Oct;24(10):1400-4.
  • [15]. Kelly JR, Giordano R, Pober R, Cima MJ. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont 1990;3(5):430-440.
  • [16]. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater. 2009 Mar;25(3):383-91.
  • [17]. al-Shehri SA, Mohammed H, Wilson CA. Influence of lamination on the flexure strength of dental castable ceramic. J Prosthet Dent 1996; 76: 23-28.
  • [18]. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CAD-CAM produced all-ceramic crowns. Dent Mater 2005; 21: 242-251.
  • [19]. Reyes MJ, Oshida Y, Andres CJ, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
  • [20]. Guo, L.a, Tian, J.a, Wu, J.a, Li, B.b, Zhu, Y.a, Xu, C.a, Qiang, Y.a Effect of surface texturing on the bonding strength of titanium-porcelain (Article) Materials Letters Volume 131, 15 September 2014, Pages 321-323
  • [21]. Guo, L.ab, Liu, X.cd, Gao, J.b, Yang, J.b, Guo, T.c, Zhu, Y.a Effect of surface modifications on the bonding strength of titanium-porcelain (Article) Materials and Manufacturing Processes Volume 25, Issue 8, July 2010, Pages 710-717
  • [22]. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont. 2008 Jul;17(5):401-8.
  • [23]. Bagby M, Marshall SJ, Marshall GW Jr. Metal ceramic compatibility: a review of the literature. J Prosthet Dent. 1990 Jan;63(1):21-5.
  • [24]. Salazar M SM, Pereira SM, Ccahuana V VZ, Passos SP, Vanderlei AD, Pavanelli CA, Bottino MA. Shear bond strength between metal alloy and a ceramic system, submitted to different thermocycling immersion times. Acta Odontol Latinoam. 2007;20(2):97-102.
  • [25]. R. Van Noort Introduction to Dental Materials (3rded.)Elsevier (2007)
  • [26]. Liu PR, Essig ME. Panorama of dental CAD/CAM restorative systems. Compend Contin Educ Dent. 2008 Oct;29(8):482, 484, 486-8 passim.
  • [27]. Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274-80. Epub 2011 May 20.
  • [28]. Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996 Jun;27(6):401-8.
  • [29]. Pröbster L, Geis-Gerstorfer J, Simonis A, Setz J, Weber H. [Titanium--present status of a new dental material].[Article in German]. Dent Labor (Munch). 1991 Aug;39(8):1073-8.
  • [30]. Reppel PD, Walter M, Bo ̈ning K. Metallkeramischer zahnerstaz aus titan. Deutsche Zahnarztliche Zeitschrift, 1992;47(8):524 – 526.
  • [31]. Chai J, McGivney GP, Munoz CA, Rubenstein JE. A multicenter longitudinal clinical trial of a new system for restorations. J Prosthet Dent. 1997 Jan;77(1):1-11.
  • [32]. Walter M, Reppel PD, Böning K, Freesmeyer WB. Six-year follow-up of titanium and high-gold porcelain-fused-to-metal fixed partial dentures. J Oral Rehabil. 1999 Feb;26(2):91-6.
  • [33]. Lövgren R, Andersson B, Carlsson GE, Odman P. Prospective clinical 5-year study of ceramic-veneered titanium restorations with the Procera system. J Prosthet Dent. 2000 Nov;84(5):514-21.
  • [34]. Inagaki R, Kikuchi M, Takahashi M, Takada Y, Sasaki K. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system. Dent Mater J. 2015;34(5):679-85.
  • [35]. Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015 Feb;30(2):561-6.
  • [36]. ISO 963:1999 metal–ceramic dental restorative systems International Organization for Standardization, Geneva (1999)
  • [37]. Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014 Jul;29(4):1329-37. [38]. Mahmoodi N, Hooshmand T, Heidari S, Khoshro K. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements. Lasers Med Sci. 2016 Feb;31(2):205-11.
  • [39]. Erdur EA, Basciftci FA. Effect of Ti:Sapphire-femtosecond laser on the surface roughness of ceramics. Lasers Surg Med. 2015 Dec;47(10):833-8.
  • [40]. Gorler O, Dogan DO, Ulgey M, Goze A, Hubbezoğlu I, Zan R, Ozdemir AK. The Effects of Er:YAG, Nd:YAG, and Ho:YAG Laser Surface Treatments to Acrylic Resin Denture Bases on the Tensile Bond Strength of Silicone-Based Resilient Liners. Photomed Laser Surg. 2015 Aug;33(8):409-14.
  • [41]. Patzelt SB, Spies BC, Kohal RJ. CAD/CAM-fabricated implant-supported restorations: a systematic review. Clin Oral Implants Res. 2015 Sep;26 Suppl 11:77-85.
  • [42]. Murray AK, Attrill DC, Dickinson MR. The effects of XeCl laser etching of Ni-Cr alloy on bond strengths to composite resin: a comparison with sandblasting procedures. Dent Mater. 2005 Jun;21(6):538-44.
There are 40 citations in total.

Details

Subjects Engineering
Journal Section Special
Authors

Ayşegül Göze Saygın

Ali Kemal Özdemir This is me

Oğuzhan Görler

Publication Date April 24, 2017
Published in Issue Year 2017 Volume: 38 Issue: 2

Cite

APA Göze Saygın, A., Özdemir, A. K., & Görler, O. (2017). Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 38(2), 245-255. https://doi.org/10.17776/cumuscij.297820
AMA Göze Saygın A, Özdemir AK, Görler O. Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. April 2017;38(2):245-255. doi:10.17776/cumuscij.297820
Chicago Göze Saygın, Ayşegül, Ali Kemal Özdemir, and Oğuzhan Görler. “Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38, no. 2 (April 2017): 245-55. https://doi.org/10.17776/cumuscij.297820.
EndNote Göze Saygın A, Özdemir AK, Görler O (April 1, 2017) Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38 2 245–255.
IEEE A. Göze Saygın, A. K. Özdemir, and O. Görler, “Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 245–255, 2017, doi: 10.17776/cumuscij.297820.
ISNAD Göze Saygın, Ayşegül et al. “Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38/2 (April 2017), 245-255. https://doi.org/10.17776/cumuscij.297820.
JAMA Göze Saygın A, Özdemir AK, Görler O. Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38:245–255.
MLA Göze Saygın, Ayşegül et al. “Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, 2017, pp. 245-5, doi:10.17776/cumuscij.297820.
Vancouver Göze Saygın A, Özdemir AK, Görler O. Influence of Various Laser Surface Modifications on SBS of Titanium and Zirconium Oxide Substructures. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38(2):245-5.