Research Article
BibTex RIS Cite

ENDÜSTRİ 4.0, DİJİTALLEŞME VE BÜYÜK VERİ: LOJİSTİK VE TEDARİK ZİNCİRİ YÖNETİMİ PERSPEKTİFİ

Year 2021, Volume: 30 Issue: 3, 170 - 180, 31.12.2021
https://doi.org/10.35379/cusosbil.974810

Abstract

Lojistik ve tedarik zinciri yönetimi, günden güne dijitalleşen sistemlerdeki gelişmelerden etkilenmiştir. Dijitalleşme ile birlikte çeşitli kaynaklardan elde edilen büyük veri, lojistik ve tedarik zinciri bileşenlerinin süreç boyunca bilgi alışverişinde bulunmasına olanak sağlamaktadır. Gerçekleştirilen bilgi alışverişi, veri toplama sağlayabilir ve toplanan veriler lojistik ve tedarik zinciri süreçlerini geliştirmek için analiz edilebilir. Bu makalenin amacı, dijital gelişmeleri, uygulamalarını ve bunların lojistik ve tedarik zinciri yönetimi üzerindeki etkilerini ele almaktır. Bu amaçla öncelikle dijitalleşme, nesnelerin interneti, büyük veri, veri madenciliği ile ilgili literatür taraması sunulmaktadır. İkinci olarak, bu kavramların nasıl kullanıldığına ve ayrıca geleneksel tedarik zinciri süreçleri üzerindeki etkilerine ilişkin teorik açıklama sunulmaktadır.

References

  • Akben, İ., & Avşar, İ. İ. (2017). Dijital Tedarik Zinciri ve Bulut Bilişim. 1. Uluslarası El Ruha Sosyal Bilimler Kongresi, 104-113. Şanlıurfa.
  • Allen, K., & Helferich, O. (1990). Putting Expert Systems to Work in Logistics. Council of Logistics Management.
  • Artificial Intelligence. (2021). Gartner. Retrieved from: https://www.gartner.com/en/information-technology/glossary/artificial-intelligence.
  • Bogataj, D., & Hudoklin, D. (2017). Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model. International Journal of Production Economics.
  • Butner, K. (2010). The smarter supply chain of the future. Strategy and Leadership.
  • Calatayud. (2017). The Connected Supply Chain: Enhancing Risk Management in a Changing World, Inter-American Development Bank.
  • Calatayud, A., Mangan, J., & Christopher, M. (2019). The self-thinking supply chain. Supply Chain Management, 22-38. Capgemini. (2016). Annual Report. Retrieved from: https://www.capgemini.com/wp-content/uploads/2017/07/annual_report_2016.pdf.
  • Dubey, R., Gunasekaran, A., Childe, S., & Blome, C. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), s. 341-361.
  • Evdokimov, S., Fabian, B., Günther, O., Ivantysynova, L., & Ziekow, H. (2010). RFID and the Internet of Things: Technology, Applications, and Security Challenges. Foundations and Trends in Technology Information and Operations Management, 105-185.
  • Filord.io. (2019). Filo Yönetimi Stratejinizi Güçlendirmek Sizin Elinizde: https://medium.com/@filord/filo-y%C3%B6netimi-stratejinizi-g%C3%BC%C3%A7lendirmek-sizin-elinizde-18e1dba1b03b.
  • Freeman, O. (2020, 12 14). Supply Chain. Walmart to Procure US$10bn Annually From India by 2027. Retrieved from: https://supplychaindigital.com/procurement/procurement-usdollar10bn-annually-walmart-india-2027.
  • Galindo, L. (2016). The Challenges of logistics 4.0 for the Supply chain management and the Information Technology . Master's Thesis, NTNU.
  • Golicic, S., Davis, D., Byrne, T., & Mentzer, J. (2002 ). The impact of e-commerce on supply chain relationships. International Journal of Physical Distribution & Logistics Management, s. 851-871.
  • İyigün, İ. (2019). Lojistik ve Tedarik Zinciri Süreçlerinde Büyük Veri Kullanımı ve Etkilerinin Analizi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 96-105.
  • Joshi, N. (2019, 10 8). 5 Use Causes of Big Data in Logistics. Allerin Retrieved from: https://www.allerin.com/blog/5-use-cases-of-big-data-in-logistics.
  • Kalaria, C. (2018, 02 26). Industry 4.0: Basic understanding and readiness of India. Spectral Engines. Retrieved from: https://www.spectralengines.com/articles/industry-4-0-and-how-smart-sensors-make-the-difference.
  • Klumpp, M. (2017). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics.
  • Mehra, G. (2013, 6 27). 5 Ways Big Data Can Help Retail Supply Chains. Practical Ecommerce: Retrieved from: https://www.practicalecommerce.com/5-Ways-Big-Data-Can-Help-Retail-Supply-Chains.
  • Lamba, K., & Singh, S. P. (2017). Big data in operations and supply chain management: current trends and future perspectives . Production Planning & Control, 877-890. Laney, D. (2001). D Data Management: Controlling Data Volume, Velocity, and Variety. Gartner: Retrieved from: http://blogs.gartner.com/douglaney/files/2012/01/ad949-3D-Data-Management-ControllingData-Volume-Velocity-and-Variety.pdf.
  • Lebied, M. (2017, 4 5). The datapine Blog. 5 Examples of How Big Data in Logistics Can Transform The Supply Chain. Retrieved from: https://www.datapine.com/blog/how-big-data-logistics-transform-supply-chain/.
  • Mangan, J., & Lalwani, C. (2016). Global Logistics and Supply Chain Management. West Sussex, Wiley.
  • Özdemir, A., & Özgüner, M. (2018). Endüstri 4.0 ve Lojistik Sektörüne Etkileri: Lojistik 4.0. İşletme ve İktisat Çalışmaları Dergisi, 39-47.
  • Saatçioğlu, Ö. Y., Kök, G. T., & Özispa, N. (2018). Endüstri 4.0 ve Lojistik Sektörüne Yansımalarının Örnek Olay Kapsamında Değerlendirilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1675-1696.
  • Schoenherr, T., & Speier-Pero, C. (2015). Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. Journal of Business Logistics, 120-132.
  • Solum Marketing. (2021, 09 11). What Are the Benefits of Big Data to Warehouse Management? Retrieved from: https://solumesl.com/en/insights/big-data-for-improved-industrial-warehouse.
  • Sun, C. (2012). Application of RFID Technology for Logistics on Internet of Things. AASRI Procedia, 106-111.
  • Terzi, S., Gür, Ş., & Eren, T. (2020). Sürdürülebilir Tedarik Zincirine Endüstri 4.0 Etkisinin Çok Ölçütlü Karar Verme Yöntemleri ile Değerlendirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi,, 511-527.
  • Thomas, Thomas, M., & Bashari Rad, B. (2017). Reliability Evaluation Metrics for Internet of Things, Car Tracking System: A Review. International Journal of Information Technology and Computer Science, 1-10.
  • Tiwari, S.,Wee, H.M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries . Computers & Industrial Engineering, 319-330.
  • Valmonte, G. (2021, 07 13). The Distinct Impact of Big Data Analytics in Transport & Logistics. Monstarlab. Retrieved from: https://monstar-lab.com/global/expertinsights/the-distinct-impact-of-big-data-analytics-in-transport-logistics/.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 98-110.
  • Wang, Y., Feng, L., Chang, H., & Wu, M. (2017). Research on the Impact of Big Data on Logistics. MATEC Web of Conferences.
  • Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 572-591.
  • Yıldız, A. (2018). Endüstri 4.0 ile Bütünleştirilmiş Dijital Tedarik Zinciri. Business & Management Studies: An International Journal, 1215-1230.

INDUSTRY 4.0, DIGITALIZATION, AND BIG DATA: PERSPECTIVE OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT

Year 2021, Volume: 30 Issue: 3, 170 - 180, 31.12.2021
https://doi.org/10.35379/cusosbil.974810

Abstract

Logistics and supply chain management has been affected by the developments in systems that are being digitized day by day. Along with digitalization, big data obtained from various sources allows logistics and supply chain components to exchange information throughout the process. The information exchange can provide data collection, and the collected data can be analyzed to enhance the logistics and supply chain processes. The purpose of this paper is to cover digital developments, their applications, and their impacts on logistics and supply chain management. Based on this objective, first, the literature review on digitalization, internet of things, big data, data mining is presented. Second, the theoretical explanation on how these concepts are utilized and also impact upon the traditional supply chain processes is provided.

References

  • Akben, İ., & Avşar, İ. İ. (2017). Dijital Tedarik Zinciri ve Bulut Bilişim. 1. Uluslarası El Ruha Sosyal Bilimler Kongresi, 104-113. Şanlıurfa.
  • Allen, K., & Helferich, O. (1990). Putting Expert Systems to Work in Logistics. Council of Logistics Management.
  • Artificial Intelligence. (2021). Gartner. Retrieved from: https://www.gartner.com/en/information-technology/glossary/artificial-intelligence.
  • Bogataj, D., & Hudoklin, D. (2017). Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model. International Journal of Production Economics.
  • Butner, K. (2010). The smarter supply chain of the future. Strategy and Leadership.
  • Calatayud. (2017). The Connected Supply Chain: Enhancing Risk Management in a Changing World, Inter-American Development Bank.
  • Calatayud, A., Mangan, J., & Christopher, M. (2019). The self-thinking supply chain. Supply Chain Management, 22-38. Capgemini. (2016). Annual Report. Retrieved from: https://www.capgemini.com/wp-content/uploads/2017/07/annual_report_2016.pdf.
  • Dubey, R., Gunasekaran, A., Childe, S., & Blome, C. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), s. 341-361.
  • Evdokimov, S., Fabian, B., Günther, O., Ivantysynova, L., & Ziekow, H. (2010). RFID and the Internet of Things: Technology, Applications, and Security Challenges. Foundations and Trends in Technology Information and Operations Management, 105-185.
  • Filord.io. (2019). Filo Yönetimi Stratejinizi Güçlendirmek Sizin Elinizde: https://medium.com/@filord/filo-y%C3%B6netimi-stratejinizi-g%C3%BC%C3%A7lendirmek-sizin-elinizde-18e1dba1b03b.
  • Freeman, O. (2020, 12 14). Supply Chain. Walmart to Procure US$10bn Annually From India by 2027. Retrieved from: https://supplychaindigital.com/procurement/procurement-usdollar10bn-annually-walmart-india-2027.
  • Galindo, L. (2016). The Challenges of logistics 4.0 for the Supply chain management and the Information Technology . Master's Thesis, NTNU.
  • Golicic, S., Davis, D., Byrne, T., & Mentzer, J. (2002 ). The impact of e-commerce on supply chain relationships. International Journal of Physical Distribution & Logistics Management, s. 851-871.
  • İyigün, İ. (2019). Lojistik ve Tedarik Zinciri Süreçlerinde Büyük Veri Kullanımı ve Etkilerinin Analizi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 96-105.
  • Joshi, N. (2019, 10 8). 5 Use Causes of Big Data in Logistics. Allerin Retrieved from: https://www.allerin.com/blog/5-use-cases-of-big-data-in-logistics.
  • Kalaria, C. (2018, 02 26). Industry 4.0: Basic understanding and readiness of India. Spectral Engines. Retrieved from: https://www.spectralengines.com/articles/industry-4-0-and-how-smart-sensors-make-the-difference.
  • Klumpp, M. (2017). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics.
  • Mehra, G. (2013, 6 27). 5 Ways Big Data Can Help Retail Supply Chains. Practical Ecommerce: Retrieved from: https://www.practicalecommerce.com/5-Ways-Big-Data-Can-Help-Retail-Supply-Chains.
  • Lamba, K., & Singh, S. P. (2017). Big data in operations and supply chain management: current trends and future perspectives . Production Planning & Control, 877-890. Laney, D. (2001). D Data Management: Controlling Data Volume, Velocity, and Variety. Gartner: Retrieved from: http://blogs.gartner.com/douglaney/files/2012/01/ad949-3D-Data-Management-ControllingData-Volume-Velocity-and-Variety.pdf.
  • Lebied, M. (2017, 4 5). The datapine Blog. 5 Examples of How Big Data in Logistics Can Transform The Supply Chain. Retrieved from: https://www.datapine.com/blog/how-big-data-logistics-transform-supply-chain/.
  • Mangan, J., & Lalwani, C. (2016). Global Logistics and Supply Chain Management. West Sussex, Wiley.
  • Özdemir, A., & Özgüner, M. (2018). Endüstri 4.0 ve Lojistik Sektörüne Etkileri: Lojistik 4.0. İşletme ve İktisat Çalışmaları Dergisi, 39-47.
  • Saatçioğlu, Ö. Y., Kök, G. T., & Özispa, N. (2018). Endüstri 4.0 ve Lojistik Sektörüne Yansımalarının Örnek Olay Kapsamında Değerlendirilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1675-1696.
  • Schoenherr, T., & Speier-Pero, C. (2015). Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. Journal of Business Logistics, 120-132.
  • Solum Marketing. (2021, 09 11). What Are the Benefits of Big Data to Warehouse Management? Retrieved from: https://solumesl.com/en/insights/big-data-for-improved-industrial-warehouse.
  • Sun, C. (2012). Application of RFID Technology for Logistics on Internet of Things. AASRI Procedia, 106-111.
  • Terzi, S., Gür, Ş., & Eren, T. (2020). Sürdürülebilir Tedarik Zincirine Endüstri 4.0 Etkisinin Çok Ölçütlü Karar Verme Yöntemleri ile Değerlendirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi,, 511-527.
  • Thomas, Thomas, M., & Bashari Rad, B. (2017). Reliability Evaluation Metrics for Internet of Things, Car Tracking System: A Review. International Journal of Information Technology and Computer Science, 1-10.
  • Tiwari, S.,Wee, H.M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries . Computers & Industrial Engineering, 319-330.
  • Valmonte, G. (2021, 07 13). The Distinct Impact of Big Data Analytics in Transport & Logistics. Monstarlab. Retrieved from: https://monstar-lab.com/global/expertinsights/the-distinct-impact-of-big-data-analytics-in-transport-logistics/.
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 98-110.
  • Wang, Y., Feng, L., Chang, H., & Wu, M. (2017). Research on the Impact of Big Data on Logistics. MATEC Web of Conferences.
  • Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 572-591.
  • Yıldız, A. (2018). Endüstri 4.0 ile Bütünleştirilmiş Dijital Tedarik Zinciri. Business & Management Studies: An International Journal, 1215-1230.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hazar Dorduncu 0000-0002-9481-2063

Zemzem Selin Oruç 0000-0002-8582-998X

Publication Date December 31, 2021
Submission Date July 26, 2021
Published in Issue Year 2021 Volume: 30 Issue: 3

Cite

APA Dorduncu, H., & Oruç, Z. S. (2021). INDUSTRY 4.0, DIGITALIZATION, AND BIG DATA: PERSPECTIVE OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 30(3), 170-180. https://doi.org/10.35379/cusosbil.974810