Research Article
BibTex RIS Cite

Bioactive Compounds of Myrtle Berrys’ Ultrasound-Assisted Extraction Conditions Optimized by Response Surface Methodology

Year 2023, , 1 - 13, 24.06.2023
https://doi.org/10.36846/CJAFS.2023.94

Abstract

Phytochemicals, such as phenolic compounds, are of great interest due to their health beneficial antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. The bioactive compounds in myrtle berries have shown a potentially positive effect on human health. In this study, bioactive compounds of myrtle berries were optimized by using ultrasound-assisted extraction (USE) technique. The optimal extraction conditions in term of total phenolic content (TPC) and total antioxidant activity (AA) were determined using Response Surface Methodology (RSM) Box–Behnken design. The influence of extraction parameters including, ultrasonication power, sonication time and solid-solvent ratio on TPC and AA were modeled by using a second-order regression equation. The highest desirability was observed with an ultrasonic power of 70, a solid/solvent ratio of 7 %, and an extraction time of 15 min. Sonication power and solid-solvent ratio were the significant parameters for the extraction process (p<0.05). Under these optimized conditions, the predicted value for TPC and DPPH radical scavenging activity were 1.07 g GAE /L extract, and 96.41 %, whereas the observed experimental values were found as 1.164 g GAE /L extract and 100.34 %, respectively. These findings show that extraction of bioactive compounds from myrtle berries using USE technique consumes less solvent and time.

References

  • Aksay, S. (2016). Murt (Myrtus communis L.) meyvesinin farklı ekstraktlarının toplam fenolik madde miktarı ve antioksidan özellikleri. Çukurova Tarım ve Gıda Bilimleri Dergisi, 31(2), 43-50.
  • Alipour, G., Dashti, S., Hosseinzadeh, H. (2014). Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytotherapy Research, 28(8), 1125-1136.
  • Ameer, K., Shahbaz, H.M. , Kwon, J.H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315.
  • Amiri, S., Shakeri, A., Sohrabi, M.R., Khalajzadeh, S., Ghasemi, E. (2019). Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chemistry, 271, 762-766.
  • Bas, D., Boyaci, İ.H. (2007). Modeling and optimization L: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845.
  • Capar, T.D., Dedebas, T., Yalcin H., Ekici, L. (2021). Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Industrial Crops and Products,168, 113632.
  • Cavdar, H.K., Yanik, D.K., Gok, U., Gogus, F. (2017). Optimisation of microwave-assisted extraction of pomegranate (Punica granatum L.) seed oil and evaluation of its physicochemical and bioactive properties. Food Technology and Biotechnology, 55(1), 86-94.
  • Chanioti, S., Tzia, C. (2017). Optimization of ultrasound-assisted extraction of oil from olive pomace sing response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT-Food Science and Technology, 79, 178-189.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595.
  • Dang, T.T., Vuong, Q.V., Schreider, M.J., Bowyer, M.C., Altena, I.A.V., Scarlett, C.J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161-3173.
  • Derringer, G., Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219.
  • Djemaa-Landri, K., Hamri-Zeghichi,S., Valls, J., Cluzet, S., Tristan, R., Boulahbal, N., Kadri, N., Madani, K. (2020). Phenolic content and antioxidant activities of Vitis vinifera L. leaf extracts obtained by conventional solvent and microwave-assisted extractions. Journal of Food Measurement and Characterization, 14(6), 3551-3564.
  • D’Urso, G., Montoro, P., Lai, C., Piacente, S., Sarais, G. (2019). LC-ESI/LTQOrbitrap/MS based metabolomics in analysis of Myrtus communis leaves from Sardinia (Italy). Industrial Crops and Products, 128, 354-362.
  • Hammi, K.M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80-89.
  • Hayta, M., İşçimen, E.M. (2017). Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT-Food Science and Technology, 77, 208-216.
  • Heleno, S.A., Diz, P., Prieto, M.A., Barros, L., Rodrigues, A., Barreiro, M.F., Ferreira, I. C.F.R. (2016). Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 197,1054-1063.
  • Jalili, F., Jafari, S.M., Emam-Djomeh, Z., Malekjani, N., Farzaneh, V. (2018). optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598-612.
  • Khuri, A.I., Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
  • Ozbek, H.N., Yanık, D.K., Fadıloglu, S., Gogus, F. (2020). Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Separation Science and Technology, 55(2), 289-299.
  • Pereira, P., Cebola, M.J., Olivera, M.C., Gil, M.G.B. (2017). Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. Journal of Food Science and Technology, 54(13), 4362-4369.
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M.J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111-7.
  • Sharayei, P., Azarpazhooh, E., Zomorodi, S., Ramaswamy, H.S. (2019). Ultrasound-assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT-Food Science and Technology, 101, 342-350.
  • Tian, Y., Xu, Z., Zheng, B., Lo, Y.M. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202-208.
  • Tuberoso, C.I.G., Rosa, A., Bifulco, E., Melis, M.P., Atzeri, A., Pirisi, F.M., Dessi, M.A. (2010). Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chemistry, 123(4), 1242-1251.
  • Yangui, I., Boutiti, M.Z., Boussaid, M., Messaoud, C. (2017). Essential oils of myrtaceae species growing wild in Tunisia: chemical variability and antifungal activity against biscogniauxia mediterranea, the causative agent of charcoal canker. Chemistry & Biodiversity, 14(7), 1-13.
  • Yangui, I., Youndi, F., Ghali, W., Boussaid, M., Messaoud, C. (2021). Phytochemicals, antioxidant and anti-proliferative activities of Myrtus communis L. genotypes from Tunisia. South African Journal of Botany, 137, 35-45.
  • Yılmaz, S. (2020). Myrtus communis L. meyvesinin bazı kimyasal ve antioksidatif özelliklerinin belirlenmesi. Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, 55s.
  • Yılmaz, M.S., Kutlu Kantar, N., Erdem, G.M., Şakıyan Demirkol, Ö., İşçi Yakan, A. (2021). Fenolik bileşiklerin alıç meyvesinden (Creategus monogyna) mikrodalga ve ultrases destekli yöntemler ile ekstraksiyonu. Gıda, 46(4), 1002-1015.
  • Zam, W., Ali, A., Ibrahim, W. (2017). Improvement of polyphenolic content and antioxidant activity of Syrian myrtle berries (Myrtus communis L.) hydro-alcoholic extracts using flavoring additives. Progress in Nutrition, 26, 112-120.
  • Zermane, A., Larkeche, O., Meniai, A.H., Crampon, C., Badens, E. (2016). Optimization of Algerian rosemary essential oil extraction yield by supercritical CO2 using response surface methodology. Comptes Rendus Chimie, 19(4), 538-543.

Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu

Year 2023, , 1 - 13, 24.06.2023
https://doi.org/10.36846/CJAFS.2023.94

Abstract

Fenolik bileşikler gibi bazı fitokimyasallar, antioksidan özellikleri nedeni ile iltihaplanma, kalp damar hastalıkları ve belirli kanser türlerine karşı olası koruma sağladıklarından büyük ilgi görmektedir. Murt meyvesi (Myrtus communis L.) içerdiği biyoaktif bileşiklerden dolayı insan sağlığı üzerinde potansiyel pozitif etki göstermektedir. Bu çalışmada, murt meyvesinin biyoaktif bileşikleri ultrasonik-destekli ekstraksiyon (USE) yöntemi ile optimize edilmiştir. Murt meyvesi ekstraktlarının toplam fenolik madde içeriği (TFM) ve antioksidan aktivite (AA) açısından optimal ekstraksiyon koşulları, Yanıt Yüzey Yöntemi (RSM) Box-Behnken deney tasarımı kullanılarak belirlenmiştir. Ultrasonikasyon gücü, ultrasonikasyon süresi ve katı-sıvı oranı gibi ekstraksiyon parametrelerinin TFM ve AA üzerindeki etkisi, ikinci dereceden bir regresyon denklemi kullanılarak modellenmiştir. Optimum USE koşulları 70 W sonikasyon gücü, 15 dakika sonikasyon süresi ve % 7 katı-sıvı oranında elde edilmiştir. Sonikasyon gücü ve katı-sıvı oranı TFM ve AA ekstraksiyon işleminde istatistiksel olarak önemli (p<0.05) bulunmuştur. Optimum koşullar altında TFM ve AA sırası ile 1.164 g GAE/L ve % 100.34 olarak tahminlenirken, bu değerler deneysel olarak 1.07 g GAE/L ve % 96.41 olarak bulunmuştur. Elde edilen sonuçlar, deneysel tasarım ile murt meyvesinden biyoaktif bileşiklerin USE yöntemi ile ekstraksiyonunun zaman ve çözgen açısından fayda sağladığını ortaya koymaktadır.

References

  • Aksay, S. (2016). Murt (Myrtus communis L.) meyvesinin farklı ekstraktlarının toplam fenolik madde miktarı ve antioksidan özellikleri. Çukurova Tarım ve Gıda Bilimleri Dergisi, 31(2), 43-50.
  • Alipour, G., Dashti, S., Hosseinzadeh, H. (2014). Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytotherapy Research, 28(8), 1125-1136.
  • Ameer, K., Shahbaz, H.M. , Kwon, J.H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315.
  • Amiri, S., Shakeri, A., Sohrabi, M.R., Khalajzadeh, S., Ghasemi, E. (2019). Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chemistry, 271, 762-766.
  • Bas, D., Boyaci, İ.H. (2007). Modeling and optimization L: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845.
  • Capar, T.D., Dedebas, T., Yalcin H., Ekici, L. (2021). Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Industrial Crops and Products,168, 113632.
  • Cavdar, H.K., Yanik, D.K., Gok, U., Gogus, F. (2017). Optimisation of microwave-assisted extraction of pomegranate (Punica granatum L.) seed oil and evaluation of its physicochemical and bioactive properties. Food Technology and Biotechnology, 55(1), 86-94.
  • Chanioti, S., Tzia, C. (2017). Optimization of ultrasound-assisted extraction of oil from olive pomace sing response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT-Food Science and Technology, 79, 178-189.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595.
  • Dang, T.T., Vuong, Q.V., Schreider, M.J., Bowyer, M.C., Altena, I.A.V., Scarlett, C.J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161-3173.
  • Derringer, G., Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219.
  • Djemaa-Landri, K., Hamri-Zeghichi,S., Valls, J., Cluzet, S., Tristan, R., Boulahbal, N., Kadri, N., Madani, K. (2020). Phenolic content and antioxidant activities of Vitis vinifera L. leaf extracts obtained by conventional solvent and microwave-assisted extractions. Journal of Food Measurement and Characterization, 14(6), 3551-3564.
  • D’Urso, G., Montoro, P., Lai, C., Piacente, S., Sarais, G. (2019). LC-ESI/LTQOrbitrap/MS based metabolomics in analysis of Myrtus communis leaves from Sardinia (Italy). Industrial Crops and Products, 128, 354-362.
  • Hammi, K.M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80-89.
  • Hayta, M., İşçimen, E.M. (2017). Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT-Food Science and Technology, 77, 208-216.
  • Heleno, S.A., Diz, P., Prieto, M.A., Barros, L., Rodrigues, A., Barreiro, M.F., Ferreira, I. C.F.R. (2016). Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 197,1054-1063.
  • Jalili, F., Jafari, S.M., Emam-Djomeh, Z., Malekjani, N., Farzaneh, V. (2018). optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598-612.
  • Khuri, A.I., Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
  • Ozbek, H.N., Yanık, D.K., Fadıloglu, S., Gogus, F. (2020). Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Separation Science and Technology, 55(2), 289-299.
  • Pereira, P., Cebola, M.J., Olivera, M.C., Gil, M.G.B. (2017). Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. Journal of Food Science and Technology, 54(13), 4362-4369.
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M.J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111-7.
  • Sharayei, P., Azarpazhooh, E., Zomorodi, S., Ramaswamy, H.S. (2019). Ultrasound-assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT-Food Science and Technology, 101, 342-350.
  • Tian, Y., Xu, Z., Zheng, B., Lo, Y.M. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202-208.
  • Tuberoso, C.I.G., Rosa, A., Bifulco, E., Melis, M.P., Atzeri, A., Pirisi, F.M., Dessi, M.A. (2010). Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chemistry, 123(4), 1242-1251.
  • Yangui, I., Boutiti, M.Z., Boussaid, M., Messaoud, C. (2017). Essential oils of myrtaceae species growing wild in Tunisia: chemical variability and antifungal activity against biscogniauxia mediterranea, the causative agent of charcoal canker. Chemistry & Biodiversity, 14(7), 1-13.
  • Yangui, I., Youndi, F., Ghali, W., Boussaid, M., Messaoud, C. (2021). Phytochemicals, antioxidant and anti-proliferative activities of Myrtus communis L. genotypes from Tunisia. South African Journal of Botany, 137, 35-45.
  • Yılmaz, S. (2020). Myrtus communis L. meyvesinin bazı kimyasal ve antioksidatif özelliklerinin belirlenmesi. Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, 55s.
  • Yılmaz, M.S., Kutlu Kantar, N., Erdem, G.M., Şakıyan Demirkol, Ö., İşçi Yakan, A. (2021). Fenolik bileşiklerin alıç meyvesinden (Creategus monogyna) mikrodalga ve ultrases destekli yöntemler ile ekstraksiyonu. Gıda, 46(4), 1002-1015.
  • Zam, W., Ali, A., Ibrahim, W. (2017). Improvement of polyphenolic content and antioxidant activity of Syrian myrtle berries (Myrtus communis L.) hydro-alcoholic extracts using flavoring additives. Progress in Nutrition, 26, 112-120.
  • Zermane, A., Larkeche, O., Meniai, A.H., Crampon, C., Badens, E. (2016). Optimization of Algerian rosemary essential oil extraction yield by supercritical CO2 using response surface methodology. Comptes Rendus Chimie, 19(4), 538-543.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Article
Authors

Tugba Dursun Capar 0000-0002-1075-0054

Publication Date June 24, 2023
Published in Issue Year 2023

Cite

APA Dursun Capar, T. (2023). Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 38(1), 1-13. https://doi.org/10.36846/CJAFS.2023.94
AMA Dursun Capar T. Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu. Çukurova Tarım Gıda Bil. Der. June 2023;38(1):1-13. doi:10.36846/CJAFS.2023.94
Chicago Dursun Capar, Tugba. “Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi Ile Optimizasyonu”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 38, no. 1 (June 2023): 1-13. https://doi.org/10.36846/CJAFS.2023.94.
EndNote Dursun Capar T (June 1, 2023) Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu. Çukurova Tarım ve Gıda Bilimleri Dergisi 38 1 1–13.
IEEE T. Dursun Capar, “Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu”, Çukurova Tarım Gıda Bil. Der., vol. 38, no. 1, pp. 1–13, 2023, doi: 10.36846/CJAFS.2023.94.
ISNAD Dursun Capar, Tugba. “Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi Ile Optimizasyonu”. Çukurova Tarım ve Gıda Bilimleri Dergisi 38/1 (June 2023), 1-13. https://doi.org/10.36846/CJAFS.2023.94.
JAMA Dursun Capar T. Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu. Çukurova Tarım Gıda Bil. Der. 2023;38:1–13.
MLA Dursun Capar, Tugba. “Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi Ile Optimizasyonu”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 38, no. 1, 2023, pp. 1-13, doi:10.36846/CJAFS.2023.94.
Vancouver Dursun Capar T. Murt Meyvesinin Biyoaktif Özelliklerinin Ultrases Destekli Ekstraksiyon Yöntemi ile Optimizasyonu. Çukurova Tarım Gıda Bil. Der. 2023;38(1):1-13.

Çukurova Üniversitesi Ziraat Fakültesi Dergisi” yayın hayatına 1 Ocak 2016 tarihi itibariyle “Çukurova Tarım ve Gıda Bilimleri Dergisi” adıyla devam etmektedir.


logo_224x57_white.gif       ResearchBib User Pictureroot indexing ile ilgili görsel sonucu