Review
BibTex RIS Cite

Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi

Year 2016, Volume: 31 Issue: 2, 35 - 42, 29.07.2016

Abstract

Laktik asit bakterileri diğer bakteriler gibi gerek in vitro gerekse in vivo koşullarda üreme ve gelişme süreçlerinde birçok stres faktörü ile karşılaşırlar. Bunlardan biri de oksidatif strestir. Oksidatif stres laktik asit bakterilerinin mikrobiyal gelişimi ve metabolit üretme yeteneklerini olumsuz etkiler. Katalaz negatif özellikli laktik asit bakterilerinin oksijene karşı hassasiyetlerinin azaltılmasında bugüne kadar çeşitli moleküler çalışmalar yapılmıştır. Öte yandan, üretici suşun genetik doğasında herhangi bir değişiklik yapmadan kültür ortamına hemin ilavesi ile de oksidatif stres ortadan kaldırılabilinir. Bu derlemede; laktik asit bakterilerinde görülen oksidatif stresin hücre tarafından elemine edilmesinde etkili olan hemin ve hemin ilavesinin hücredeki etki mekanizması üzerinde durulmuştur.

References

  • Abriouel H., Herrmann A., Stärke J., Yousif N.M., Wijaya A., Tauscher B., Holzapfel W., Franz C.M. (2004) Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microb. 70(1):603-6.
  • Arioli S., Zambelli D., Guglielmetti S., De Noni I., Pedersen M.B., Dedenroth P.D., Pedersen, Dal Bello F., Mora D. (2013) Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl. Environ. Microbiol. 79:376–380.
  • Brooijmans R., Smit B., Santos F., Riel J.V., Vos W., Hugenholtz J. (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Factor. 8:28-30.
  • Brooijmans R.J., de Vos W.M., Hugenholtz J. (2009) Lactobacillus plantarum WCFS1 electron transport chains. Appl. Environ. Microbiol. 75:3580–85.
  • Bryan-Jones D.G.,Whittenbury R. (1969) Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J. Gen Microb. 58:247-60.
  • Dikici A. (2009) Çevresel Stres Faktörlerine Karşı Bakteriyel Adaptasyonlar ve Mekanizmaları. Gıda.4 (3): 59-68.
  • Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K. (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and positive its effects on growth and survival. J. Bacteriol. 183:4509-16.
  • Guchte M.,Serror P., Chervaux C., Smokvina T., Ehrlich S., Maguin E. (2002) Stress responses in lactic acid bacteria. A van LeeuwJ Microb. 82, 187–216.
  • Huycke M.M., Moore D., Joyce W., Wise P., Shepard L. (2001) Extracellular superoxide production by Enterococcus faecalis requires demethyl menaquinone and is attenuated by functional terminal quinol oxidases. Mol Microb. 42:729–40.
  • Kördikanlıoğlu B., Şimşek Ö., Saris P.E. (2015) Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. Biotechnol Progr. 31(3):678-85.
  • Lan Q.C., Oddone G., Mills A.D., Block E.D., (2006) Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Wiley Inter Science. 96 (6) :1127-38.
  • Lechardeur D., Cesselin B., Fernandez A., Lamberet G., Garrigues C., Pedersen M., Gaudu P., Gruss A. (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotech. 22:143–149.
  • Mayfield J.A.., Dehner A., DuBois J.L. (2011) Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol. 15(2):260-6.
  • Miyoshi A., Rochat T., Gratadoux J.J., Loir Y., Oliveira S.C., Langella P., Azevedo V. (2003) Oxidative stres in Lactococcus lactis. Genet Mol Res. 2 (4): 348-359.
  • Nagayasu M.,Wardani A.K., Nagahisa K., Shimuzu H., Shioya S. (2007) Analysis of hemin effect on lactate reduction in Lactococcus lactis. J Biosci Bioeng. (6):529-53.
  • Papagianni M., Avramidis N. (2012) Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Enzyme Microb Techn. 51(3): 125–130.
  • Pedersen M., Gaudu P., Lechardeur D., Petit M., Gruss A. (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Tech. 3:37-58.
  • Rezaiki L., Cesselin B., Yamamoto Y., Vido K. (2004) Respiration metabolism reduces oxidative and acid stres to improve long-term survival of Lactococcus lactis. Mol. Microbiol. 53: 1331-42.
  • Rezaiki L., Lamberet G., Derre A., Gruss A., Gaudu P. (2008) Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol. Microb. 67:947-57.
  • Saarikangas J., Barral Y.(2016) Protein aggregation as a mechanism of adaptive cellular responses.Curr Genet. (Basım aşamasında).
  • Sawai H.,Yamanaka M., Sugimoto H., Shiro Y., Aono S. (2012) Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem. 287(36): 30755–30768.
  • Sijpestejn A.K. (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. . A van Leeuw. 36:335-48.
  • Şimşek Ö., Akkoç N., Çon A.H., Özçelik F., Saris P.E.J., Akçelik M. (2009) Continuous nisin production with bioengineered Lactococcus lactis strains. J Ind Microbiol Biot. 36 (6): 863-871.
  • Warburg O.H. (2010) The classic: The chemical constitution of respiration ferment. Clin Orthop Relat Res. 468(11):2833-9.
  • Wardani A.H., Egawa S., Nagahisa K., Shimizu H., Shioya S. (2006) Computational prediction of impact of rerouting the carbon flux in metabolic pathway on cell growth and nisin production by Lactococcus lactis. Biochem Eng J. 28, 220-230.
  • Watanabe M., van der Veen S., Nakajima H., Abee T. (2012) Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiol.158:293–300.
  • Yamamoto Y., Poyart C., Trieu-Cuot P., Lamberet G., Gruss A., Gaudu P. (2005) Respiration metabolism of Group B Streptococcus is activated by enviromental haem and quinone and contributes to virulence. Mol. Microb. 56:525-34.
  • Zhao R., Zheng S., Duan C., Liu F., Yang L., Huo G. (2013) NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis. FEBS Open Bio.19;3:379-86.

Influence Of Hemin Addition On Oxidative Stress In Lactic Acid Bacteria

Year 2016, Volume: 31 Issue: 2, 35 - 42, 29.07.2016

Abstract

Lactic acid bacteria as much as other bacteria are faced to many stress factors during their growth and development process in vitro and in vivo conditions. Oxidative stress represents one of these stress factors. Oxidative stress negatively affects microbial growth and metabolite production of lactic acid bacteria. Many molecular studies have been done on the reduction of oxygen sensitivity of lactic acid bacteria which have catalase negative property. However, addition of hemin into the fermentation medium can prevent the oxidative stress of lactic acid bacteria without doing any genetic modification. In this review, hemin structure and addition of hemin for the elimination of oxidative stress by the cell occurring in lactic acid bacteria were discussed

References

  • Abriouel H., Herrmann A., Stärke J., Yousif N.M., Wijaya A., Tauscher B., Holzapfel W., Franz C.M. (2004) Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microb. 70(1):603-6.
  • Arioli S., Zambelli D., Guglielmetti S., De Noni I., Pedersen M.B., Dedenroth P.D., Pedersen, Dal Bello F., Mora D. (2013) Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl. Environ. Microbiol. 79:376–380.
  • Brooijmans R., Smit B., Santos F., Riel J.V., Vos W., Hugenholtz J. (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Factor. 8:28-30.
  • Brooijmans R.J., de Vos W.M., Hugenholtz J. (2009) Lactobacillus plantarum WCFS1 electron transport chains. Appl. Environ. Microbiol. 75:3580–85.
  • Bryan-Jones D.G.,Whittenbury R. (1969) Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J. Gen Microb. 58:247-60.
  • Dikici A. (2009) Çevresel Stres Faktörlerine Karşı Bakteriyel Adaptasyonlar ve Mekanizmaları. Gıda.4 (3): 59-68.
  • Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K. (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and positive its effects on growth and survival. J. Bacteriol. 183:4509-16.
  • Guchte M.,Serror P., Chervaux C., Smokvina T., Ehrlich S., Maguin E. (2002) Stress responses in lactic acid bacteria. A van LeeuwJ Microb. 82, 187–216.
  • Huycke M.M., Moore D., Joyce W., Wise P., Shepard L. (2001) Extracellular superoxide production by Enterococcus faecalis requires demethyl menaquinone and is attenuated by functional terminal quinol oxidases. Mol Microb. 42:729–40.
  • Kördikanlıoğlu B., Şimşek Ö., Saris P.E. (2015) Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. Biotechnol Progr. 31(3):678-85.
  • Lan Q.C., Oddone G., Mills A.D., Block E.D., (2006) Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Wiley Inter Science. 96 (6) :1127-38.
  • Lechardeur D., Cesselin B., Fernandez A., Lamberet G., Garrigues C., Pedersen M., Gaudu P., Gruss A. (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotech. 22:143–149.
  • Mayfield J.A.., Dehner A., DuBois J.L. (2011) Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol. 15(2):260-6.
  • Miyoshi A., Rochat T., Gratadoux J.J., Loir Y., Oliveira S.C., Langella P., Azevedo V. (2003) Oxidative stres in Lactococcus lactis. Genet Mol Res. 2 (4): 348-359.
  • Nagayasu M.,Wardani A.K., Nagahisa K., Shimuzu H., Shioya S. (2007) Analysis of hemin effect on lactate reduction in Lactococcus lactis. J Biosci Bioeng. (6):529-53.
  • Papagianni M., Avramidis N. (2012) Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Enzyme Microb Techn. 51(3): 125–130.
  • Pedersen M., Gaudu P., Lechardeur D., Petit M., Gruss A. (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Tech. 3:37-58.
  • Rezaiki L., Cesselin B., Yamamoto Y., Vido K. (2004) Respiration metabolism reduces oxidative and acid stres to improve long-term survival of Lactococcus lactis. Mol. Microbiol. 53: 1331-42.
  • Rezaiki L., Lamberet G., Derre A., Gruss A., Gaudu P. (2008) Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol. Microb. 67:947-57.
  • Saarikangas J., Barral Y.(2016) Protein aggregation as a mechanism of adaptive cellular responses.Curr Genet. (Basım aşamasında).
  • Sawai H.,Yamanaka M., Sugimoto H., Shiro Y., Aono S. (2012) Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem. 287(36): 30755–30768.
  • Sijpestejn A.K. (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. . A van Leeuw. 36:335-48.
  • Şimşek Ö., Akkoç N., Çon A.H., Özçelik F., Saris P.E.J., Akçelik M. (2009) Continuous nisin production with bioengineered Lactococcus lactis strains. J Ind Microbiol Biot. 36 (6): 863-871.
  • Warburg O.H. (2010) The classic: The chemical constitution of respiration ferment. Clin Orthop Relat Res. 468(11):2833-9.
  • Wardani A.H., Egawa S., Nagahisa K., Shimizu H., Shioya S. (2006) Computational prediction of impact of rerouting the carbon flux in metabolic pathway on cell growth and nisin production by Lactococcus lactis. Biochem Eng J. 28, 220-230.
  • Watanabe M., van der Veen S., Nakajima H., Abee T. (2012) Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiol.158:293–300.
  • Yamamoto Y., Poyart C., Trieu-Cuot P., Lamberet G., Gruss A., Gaudu P. (2005) Respiration metabolism of Group B Streptococcus is activated by enviromental haem and quinone and contributes to virulence. Mol. Microb. 56:525-34.
  • Zhao R., Zheng S., Duan C., Liu F., Yang L., Huo G. (2013) NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis. FEBS Open Bio.19;3:379-86.
There are 28 citations in total.

Details

Subjects Food Engineering, Agricultural Engineering
Journal Section Research Article
Authors

Burcu Özel This is me

Ömer Şimşek This is me

Hüseyin Erten

Publication Date July 29, 2016
Published in Issue Year 2016 Volume: 31 Issue: 2

Cite

APA Özel, B., Şimşek, Ö., & Erten, H. (2016). Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 31(2), 35-42.
AMA Özel B, Şimşek Ö, Erten H. Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi. Çukurova J. Agric. Food. Sciences. July 2016;31(2):35-42.
Chicago Özel, Burcu, Ömer Şimşek, and Hüseyin Erten. “Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 31, no. 2 (July 2016): 35-42.
EndNote Özel B, Şimşek Ö, Erten H (July 1, 2016) Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi. Çukurova Tarım ve Gıda Bilimleri Dergisi 31 2 35–42.
IEEE B. Özel, Ö. Şimşek, and H. Erten, “Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi”, Çukurova J. Agric. Food. Sciences, vol. 31, no. 2, pp. 35–42, 2016.
ISNAD Özel, Burcu et al. “Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi”. Çukurova Tarım ve Gıda Bilimleri Dergisi 31/2 (July 2016), 35-42.
JAMA Özel B, Şimşek Ö, Erten H. Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi. Çukurova J. Agric. Food. Sciences. 2016;31:35–42.
MLA Özel, Burcu et al. “Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 31, no. 2, 2016, pp. 35-42.
Vancouver Özel B, Şimşek Ö, Erten H. Hemin İlavesinin Laktik Asit Bakterilerinde Oksidatif Stres Üzerine Etkisi. Çukurova J. Agric. Food. Sciences. 2016;31(2):35-42.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.