Research Article
BibTex RIS Cite

Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri

Year 2021, Volume: 36 Issue: 1, 111 - 122, 30.06.2021

Abstract

Bu araştırmada, farklı kadmiyum (Cd(NO3)2.4H2O) konsantrasyonlarının (0.1 and 1 mM) bir hıyar genotipindeki (Cucumis sativus L. cv. Beith Alpha F1) fotosentetik aktivite üzerine etkileri klorofil a floresansı tekniği yardımıyla araştırılmıştır. Hıyar bitkilerinin yapraklarındaki fotosentetik pigment (klorofil a, klorofil b, toplam klorofil ve toplam karotenoid) miktarı doza bağlı olarak azalmıştır. Bu sonuç karotenoidlerin sağladığı koruyucu bir mekanizmanın eksikliği ile açıklanabilir. Klorofil a floresans ölçümleri ve JIP testi sonuçları, hıyar yapraklarındaki fotosentetik pigment miktarındaki azalmanın fotosentetik aktiviteyi de olumsuz etkilediğini göstermiştir. Klorofil floresansı ve JIP testi parametrelerindeki değişimler, kadmiyum toksisitesinin fotosistem II’nin reaksiyon merkezlerinde yapısal hasara neden olmadığını ancak fotosistem II’nin hem donör hem de akseptör bölgesindeki elektron taşınım reaksiyonlarını inhibe ettiğini ortaya çıkarmıştır. Ayrıca kadmiyum toksisitesinin hıyar yapraklarındaki karbon fiksasyon reaksiyonlarını, fotokimyasal reaksiyonlara göre daha şiddetli bir şekilde inhibe ettiği gözlenmiştir. Sonuç olarak, kadmiyum toksisitesi altındaki hıyar yapraklarında fotosentetik aktivitenin öncelikli olarak karanlık reaksiyonların inhibisyonundan dolayı azalma gösterdiği söylenebilir.

References

  • Agrawal, S. B., Mishra, S. (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Safety 72: 610-618.
  • Ali, B., Gill, R. A., Yang, S., Gill, M. B., Farooq, M. A., Liu, D., Daud, M. K., Ali, S., Zhou, W. (2015) Regulation of cadmium-induced proteomics and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLOS One 10: 328.
  • Bussotti, F., Strasser, R. J., Schaub, M. (2007) Photosynthetic behaviour of woody species under high ozone exposure probed with the JIP test: a review. Environ Pollut 147: 430-437.
  • Chaney, R. L. (2015) How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Curr Pollut Rep 1: 13-22.
  • Chang, Y. S., Chang, Y. J., Lin, C. T., Lee, M. C., Wu, C. W., Lai, Y. H. (2013) Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lenceolata. Int Biodet Biodeg 85: 709-714.
  • Chen, F., Wang, F., Zhang, G., Wu, F. (2008) Identification of barley varieties tolerant to cadmium toxicity. Biol Trace Element Res 121: 171-179.
  • Cooper, J., Bolbot, J. A., Saini, S., Setford, S. J. (2007). Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut 179: 183-195.
  • Dhir, B., Sharmila, P., Saradhi, P. P., Nasim, A. S. (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium rich wastewater. Ecotoxicol Environ Safety 72: 1790-1797.
  • Doğru, A. (2019) Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi. Bartın Uni Int JONAS 2(2): 228-238.
  • Doğru, A. (2020) Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity. Biologia 75: 1265-1272.
  • Doğru, A., Bildiren, Ş. (2020) Tuz stresi altındaki buğday genotiplerinde foliar bor uygulamalarının neden olduğu fizyolojik ve biyokimyasal değişimler. Bor Dergisi, 5: 100-107.
  • Doğru, A., Çakırlar, H. (2020a). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. Braz J Bot 43: 11-20.
  • Doğru, A., Çakırlar, H. (2020b). Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Funct Plant Biol 47(3): 250-262.
  • Dündar, M. Ş. (2008). Aşağı Sakarya Nehri su ve sediment kalitesinin belirlenmesi. TÜBİTAK projesi (Proje no: 106Y037).
  • Force, L., Critchley, C., van Rensen, J. J. S. (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP test. Photosynth Res 78: 17-33.
  • Gill, R. A., Zang, L., Ali, B., Farooq, M. A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120: 154-164.
  • Govindjee. (2004). Chlorophyll a fluorescence: a bit of basics and history. Springer, Dordrecht.
  • Gratao, P. L., Monteiro, C. C., Rossi, M. L., Martinelli, A. P., Peres, L. E., Medici, L. O., Lea, P. J., Ezevado, R. A. (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67: 387-394.
  • Gupta, R. (2020). Manganese repairs the oxygen-evolving complex (OEC) in maize (Zea mays L.) damage during seawater vulnerability. J Soil Sci Plant Nutr 20: 1387-1396.
  • Hassan, W., Bano, R., Bashir, S., Aslam, Z. (2016) Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Res 54: 460-468.
  • Huang, B., Xin, J., Dai, H., Liu, A., Zhou, W., Yi, Y., Liao, K. (2015) Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environ Sci Pollut Res 22: 1151-1159.
  • Huang, Y., Wang, L., Wang, W., Li, T., He, Z., Yang, X. (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651: 3034-3042.
  • Irfan, M., Hayat, S., Ahmad, A., Alyemeni, M. N. (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20: 1-10.
  • Kalaji, H. M., Govindjee, Bosa, K., Koscielniak, J., Zuk-Golaszewska, K. (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73: 64-72.
  • Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., Zhang, Y., Liu, H., Deng, D., Yin, Z. (2017) Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot 140: 56-64.
  • Leon, A. M., Palma, J. M., Corpas, F. J., Gomes, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., Luis, A., Sandalio, L. M. (2002) Antioxidative enzymes in cultivar of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40: 813-820.
  • Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Meth Enzymol 148: 350–382.
  • Maxwell, K., Johnson, N. G. (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51: 659-668.
  • Meravi, N., Prajapati, S. K. (2018) Temporal variation in chlorophyll fluorescence of different tree species. Biol Rhythm Res 49: 1-7.
  • Mesnoua, M., Naranja, E. M., Barcia-Piedras, J. M., Perez-Romero, J. A., Lotmani, B., Redondo-Gomez, S. (2016) Physiological and biochemical mechanisms preventing Cd toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol Biochem 106: 30-38.
  • Monteiro, M. S., Santos, C., Soares, A. M. V. M., Mann, R. M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Safety 72: 811-818.
  • Nedjimi, B., Daoud, Y. (2008). Cadmium accumulation in Atriplex hakimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204: 316-324.
  • Oukarroum, A., Bussotti, F., Goltsev, V., Hazem, M. H. (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna minor L. plants under salt stress. Environ Exp Bot 109: 80-88.
  • Pereira, W. E., de Siqueira, D. L., Martinez, C. A., Puiatti, M. (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157: 513-520.
  • Polle, A., Klein, T., Kettner, C. (2013) Impact of cadmium on young plants of Populus euphratica and P. x canescens, two poplar species that differs in stress tolerance. New Forests 44: 13-22.
  • Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Keller, C. (2016). Silicon alleviates Cd stress of wheat seedlings (Triticum aestivum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23: 1414-1427.
  • Sebastian, A., Prasad, M. N. V. (2018) Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: probing role of cadmium localization and iron nutrition. Ecotoxicol Environ Safety 166: 215-222.
  • Semane, B., Dupae, J., Cuypers, A., Noben, J. P., Tuomainen, M., Tervahauta, A., Karenlampi, S., Van Belleghem, F., Smeets, K., Vangronsveld, J. (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167: 247-254.
  • Strasser, R. J., Tsimilli-Mitchael, M., Srivastava, A. (2004) Analysis of chlorphyll a fluorescence transient. Springer, Dordrecht.
  • Trebst, A. (2003) Function of β-carotene and tocopherol in photosystem II. Z Naturforsch 58: 609-620.
  • Volland, S., Bayer, E., Baumgartner, V., Andosch, A., Lütz, C., Sima, E., Lutz-Meindl, U. (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171: 154-163.
  • Xin, J. P., Ma, S., Zhao, C., Li, Y., Tian, R. (2020) Cadmium phytotoxicity, related physiological changes in Pontederia cordata: antioxidative, osmoregulatory substances, phytochelatins, photosynthesis, and chlorophyll fluorescence. Environ Sci Pollut Res DOI: 10.1007/s11356-020-10002-z.
  • Xu, D., Chen, Z., Sun, K., Yan, D., Kang, M., Zhao, Y. (2013) Effect of cadmium on the physiological parameters and the subcellular cadmium localization in potato (Solanum tuberosum L.). Ecotoxicol Environ Safety 97: 147-153.
  • Xu, Z., Gao, H., Zhao, S. (2014) Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. Environmen Sci Pollut Res 21: 4656-4664.
  • Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Zia-ur Rehman, M., Munir, M. A. M., Niu, Z. (2016) Bioavailability evolution, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res 23: 22443-22453.
  • Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., Govindjee, Sarin, V. B. (2010) Overexpression of -tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll fluorescence measurements. Biochim Biophys Acta 1797: 1428-1438.
Year 2021, Volume: 36 Issue: 1, 111 - 122, 30.06.2021

Abstract

References

  • Agrawal, S. B., Mishra, S. (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Safety 72: 610-618.
  • Ali, B., Gill, R. A., Yang, S., Gill, M. B., Farooq, M. A., Liu, D., Daud, M. K., Ali, S., Zhou, W. (2015) Regulation of cadmium-induced proteomics and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLOS One 10: 328.
  • Bussotti, F., Strasser, R. J., Schaub, M. (2007) Photosynthetic behaviour of woody species under high ozone exposure probed with the JIP test: a review. Environ Pollut 147: 430-437.
  • Chaney, R. L. (2015) How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Curr Pollut Rep 1: 13-22.
  • Chang, Y. S., Chang, Y. J., Lin, C. T., Lee, M. C., Wu, C. W., Lai, Y. H. (2013) Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lenceolata. Int Biodet Biodeg 85: 709-714.
  • Chen, F., Wang, F., Zhang, G., Wu, F. (2008) Identification of barley varieties tolerant to cadmium toxicity. Biol Trace Element Res 121: 171-179.
  • Cooper, J., Bolbot, J. A., Saini, S., Setford, S. J. (2007). Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut 179: 183-195.
  • Dhir, B., Sharmila, P., Saradhi, P. P., Nasim, A. S. (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium rich wastewater. Ecotoxicol Environ Safety 72: 1790-1797.
  • Doğru, A. (2019) Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi. Bartın Uni Int JONAS 2(2): 228-238.
  • Doğru, A. (2020) Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity. Biologia 75: 1265-1272.
  • Doğru, A., Bildiren, Ş. (2020) Tuz stresi altındaki buğday genotiplerinde foliar bor uygulamalarının neden olduğu fizyolojik ve biyokimyasal değişimler. Bor Dergisi, 5: 100-107.
  • Doğru, A., Çakırlar, H. (2020a). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. Braz J Bot 43: 11-20.
  • Doğru, A., Çakırlar, H. (2020b). Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Funct Plant Biol 47(3): 250-262.
  • Dündar, M. Ş. (2008). Aşağı Sakarya Nehri su ve sediment kalitesinin belirlenmesi. TÜBİTAK projesi (Proje no: 106Y037).
  • Force, L., Critchley, C., van Rensen, J. J. S. (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP test. Photosynth Res 78: 17-33.
  • Gill, R. A., Zang, L., Ali, B., Farooq, M. A., Cui, P., Yang, S., Ali, S., Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120: 154-164.
  • Govindjee. (2004). Chlorophyll a fluorescence: a bit of basics and history. Springer, Dordrecht.
  • Gratao, P. L., Monteiro, C. C., Rossi, M. L., Martinelli, A. P., Peres, L. E., Medici, L. O., Lea, P. J., Ezevado, R. A. (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67: 387-394.
  • Gupta, R. (2020). Manganese repairs the oxygen-evolving complex (OEC) in maize (Zea mays L.) damage during seawater vulnerability. J Soil Sci Plant Nutr 20: 1387-1396.
  • Hassan, W., Bano, R., Bashir, S., Aslam, Z. (2016) Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Res 54: 460-468.
  • Huang, B., Xin, J., Dai, H., Liu, A., Zhou, W., Yi, Y., Liao, K. (2015) Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environ Sci Pollut Res 22: 1151-1159.
  • Huang, Y., Wang, L., Wang, W., Li, T., He, Z., Yang, X. (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651: 3034-3042.
  • Irfan, M., Hayat, S., Ahmad, A., Alyemeni, M. N. (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20: 1-10.
  • Kalaji, H. M., Govindjee, Bosa, K., Koscielniak, J., Zuk-Golaszewska, K. (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73: 64-72.
  • Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., Zhang, Y., Liu, H., Deng, D., Yin, Z. (2017) Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot 140: 56-64.
  • Leon, A. M., Palma, J. M., Corpas, F. J., Gomes, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., Luis, A., Sandalio, L. M. (2002) Antioxidative enzymes in cultivar of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40: 813-820.
  • Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Meth Enzymol 148: 350–382.
  • Maxwell, K., Johnson, N. G. (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51: 659-668.
  • Meravi, N., Prajapati, S. K. (2018) Temporal variation in chlorophyll fluorescence of different tree species. Biol Rhythm Res 49: 1-7.
  • Mesnoua, M., Naranja, E. M., Barcia-Piedras, J. M., Perez-Romero, J. A., Lotmani, B., Redondo-Gomez, S. (2016) Physiological and biochemical mechanisms preventing Cd toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol Biochem 106: 30-38.
  • Monteiro, M. S., Santos, C., Soares, A. M. V. M., Mann, R. M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Safety 72: 811-818.
  • Nedjimi, B., Daoud, Y. (2008). Cadmium accumulation in Atriplex hakimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204: 316-324.
  • Oukarroum, A., Bussotti, F., Goltsev, V., Hazem, M. H. (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna minor L. plants under salt stress. Environ Exp Bot 109: 80-88.
  • Pereira, W. E., de Siqueira, D. L., Martinez, C. A., Puiatti, M. (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157: 513-520.
  • Polle, A., Klein, T., Kettner, C. (2013) Impact of cadmium on young plants of Populus euphratica and P. x canescens, two poplar species that differs in stress tolerance. New Forests 44: 13-22.
  • Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Keller, C. (2016). Silicon alleviates Cd stress of wheat seedlings (Triticum aestivum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23: 1414-1427.
  • Sebastian, A., Prasad, M. N. V. (2018) Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: probing role of cadmium localization and iron nutrition. Ecotoxicol Environ Safety 166: 215-222.
  • Semane, B., Dupae, J., Cuypers, A., Noben, J. P., Tuomainen, M., Tervahauta, A., Karenlampi, S., Van Belleghem, F., Smeets, K., Vangronsveld, J. (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167: 247-254.
  • Strasser, R. J., Tsimilli-Mitchael, M., Srivastava, A. (2004) Analysis of chlorphyll a fluorescence transient. Springer, Dordrecht.
  • Trebst, A. (2003) Function of β-carotene and tocopherol in photosystem II. Z Naturforsch 58: 609-620.
  • Volland, S., Bayer, E., Baumgartner, V., Andosch, A., Lütz, C., Sima, E., Lutz-Meindl, U. (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171: 154-163.
  • Xin, J. P., Ma, S., Zhao, C., Li, Y., Tian, R. (2020) Cadmium phytotoxicity, related physiological changes in Pontederia cordata: antioxidative, osmoregulatory substances, phytochelatins, photosynthesis, and chlorophyll fluorescence. Environ Sci Pollut Res DOI: 10.1007/s11356-020-10002-z.
  • Xu, D., Chen, Z., Sun, K., Yan, D., Kang, M., Zhao, Y. (2013) Effect of cadmium on the physiological parameters and the subcellular cadmium localization in potato (Solanum tuberosum L.). Ecotoxicol Environ Safety 97: 147-153.
  • Xu, Z., Gao, H., Zhao, S. (2014) Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. Environmen Sci Pollut Res 21: 4656-4664.
  • Yousaf, B., Liu, G., Wang, R., Imtiaz, M., Zia-ur Rehman, M., Munir, M. A. M., Niu, Z. (2016) Bioavailability evolution, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res 23: 22443-22453.
  • Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., Govindjee, Sarin, V. B. (2010) Overexpression of -tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll fluorescence measurements. Biochim Biophys Acta 1797: 1428-1438.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Article
Authors

Ali Doğru 0000-0003-0060-4691

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Doğru, A. (2021). Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 36(1), 111-122.
AMA Doğru A. Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri. Çukurova J. Agric. Food. Sciences. June 2021;36(1):111-122.
Chicago Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 36, no. 1 (June 2021): 111-22.
EndNote Doğru A (June 1, 2021) Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri. Çukurova Tarım ve Gıda Bilimleri Dergisi 36 1 111–122.
IEEE A. Doğru, “Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri”, Çukurova J. Agric. Food. Sciences, vol. 36, no. 1, pp. 111–122, 2021.
ISNAD Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri”. Çukurova Tarım ve Gıda Bilimleri Dergisi 36/1 (June 2021), 111-122.
JAMA Doğru A. Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri. Çukurova J. Agric. Food. Sciences. 2021;36:111–122.
MLA Doğru, Ali. “Hıyar (Cucumis Sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 36, no. 1, 2021, pp. 111-22.
Vancouver Doğru A. Hıyar (Cucumis sativus L.) Bitkilerinde Kadmiyum Toksisitesinin Fotosentetik Aktivite Üzerindeki Etkileri. Çukurova J. Agric. Food. Sciences. 2021;36(1):111-22.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.