Research Article
BibTex RIS Cite

Fermantasyon Parametrelerinin Miscanthus’tan Elde Edilen Biyoetanol Verimine Etkisi

Year 2022, Volume: 37 Issue: 1, 1 - 8, 30.06.2022
https://doi.org/10.36846/CJAFS.2022.67

Abstract

Miscanthus giganteus’tan şekerlerin serbest hale getirilmesi için seyreltik asit ve alkali (NaOH) ön muamelelerini takiben enzimatik hidroliz uygulanmıştır. Optimum ön muamele koşullarını belirleyebilmek için % 0.5 ve 1.0 (a/h) H2SO4 ve NaOH konsantrasyonlarında, 120°C ve 180°C’lerde, 10 ve 90 süreyle piroliz işlemleri gerçekleştirilmiştir. 0.5% NaOH konsantrasyonu, 120°C ve 90 dk sürede gerçekleştirilen piroliz sonucu en yüksek fermente edilebilir şeker (32.78 g/L) elde edilmiştir. Etanol fermantasyonu 25°C ve 30°C’lerde Saccharomyces cerevisiae ile azot kaynağı ilaveli ve ilavesiz yürütülmüştür. Hem sıcaklık hem de azot kaynağı ilavesi Miscanthus giganteus‘tan elde edilen etanol verimini etkilemiştir. Her iki sıcaklıkta da azot ilavesinin etanol verimini artırdığı bulunmuştur. En yüksek etanol verimi 30°C’de azot ilavesi ile gerçekleştirilen fermantasyonda elde edilmiştir.

References

  • Alam, A, Wang, Y, Liu, F, Kang, H, Tang, S. W. (2020) Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of Wall polymer features and biomass porosity in Miscanthus. Renew Energ 159:1128-1138.
  • Alvira. P, Tomás-Pejó, E, Ballesteros, M, Negro, M. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101 4851-4861.
  • Bajpai, B. (2013) Advances in Bioethanol. Springer, New Delhi, India.
  • Bely, M, Rinaldi, A, Dubourdieu, D. (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96: 507-512.
  • Berthels, N. J., Otero, R. R. C., Bauer, F. F., Thevelein, J. M., Pretorius, I. S. (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4: 683–689.
  • Brosse, N., Sannigrahi, P., Ragauskas, A. (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48: 8328-8334.
  • Cha, Y. L., An, G. H., Yang, J., Moon, Y-H., Yu, G-D. et al (2015) Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renew Energ 80: 259-265.
  • Cheng, K. K., Ge, J. P., Zhang, J. A., Ling, H. Z., Zhou, Y. J. (2007) Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett 29: 1051-1055.
  • Domínguez-Bocanegra, A. R., Torres-Muñoz, J. A., López, R. A. (2015) Production of bioethanol from agro-industrial wastes. Fuel 149: 85-89.
  • Dubis, B., Bułkowska, K., Lewandowska, M., Szemplinski, W., Jankowski, K. J. et al (2017) Effect of different nitrogen fertilizer treatments on the conversion of Miscanthus x giganteus to ethanol. Bioresour Technol 243: 731–737.
  • Galbe, M., Zacchi, G. (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 46:70-78.
  • Gutiérrez, A., Chiva, R., Sancho, M., Beltra,n G., Arroyo-López, F. N. et al (2012) Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol 31: 25-32.
  • Hahn-Hägerda, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., Zacchi, G. (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549-556.
  • Han, M., Kim, Y., Koo, B. C., Choi, G. W. (2011) Bioethanol production by Miscanthus as a lignocellulosic biomass: Focus on high efficiency conversion to glucose and ethanol. Bioresources 6:1939-1953.
  • Hu, F., Ragauskas, A. (2014) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. Rsc. Advances. 4: 317-4323. Jambo, S. A., Abdulla, R. S., Azhar, H. M., Marbawi, H., Gansau, J. A. et al (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756-769.
  • Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., Laopaiboon, P. (2009) Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technol 100: 4176-4182.
  • Li, X., Kim, T. H., Nghiem, N. P. (2010) Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technol 101: 5910-5916.
  • Moon, S-K., Kim, S. W., Choi, G-W. (2012) Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 157: 584-589.
  • Nashiruddin, N. I., Mansor, A. F., Rahman, R. A., Ilias, R. M., Yussof, H. W. (2020) Process parameter optimization of pretreated pineapple leaves fiber for enhancement of sugar recovery. Ind Crops Prod 152: 112514.
  • Nlewem, K. C., Thrash, M. E. (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technol 101: 5426-5430.
  • Raghavi, S., Sindhu, R., Binod, P., Gnansounou, E., Pandey, A. (2016) Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technol 199:202-210.
  • Reddy, P. K., Vijay, M., Kusuma, M., Ramesh, K. V. (2021) Optimum parameters for production of ethanol from synthetic molasses by Saccharomyces cerevisiae. Mater Today: Proceedings 46: 154-156.
  • Schwarz, L. V., Marcon, A. R., Delamare, A. P. L., Echeverrigaray, S. (2021). Influence of nitrogen, minerals and vitamins supplementation on honey wine production using response surface methodology. J Apic Res 60: 57-66.
  • Sharma, B., Laroche, C., Dussap, C. G. (2020) Comprehensive assessment of 2G bioethanol production. Bioresource Technol 313:1-9. Sivamani, S., Baskar, R. (2015) Optimization of bioethanol production from cassava peel using statistical experimental design. Environ Prog Sustain 34 567-574.
  • Sturgeon, J. Q., Bohlscheid, J. C., Edwards, C. G. (2013) The effect of nitrogen source on yeast metabolism and H2S formation. J Wine Res 24: 182–194. Tan, J. S., Phapugrangkul, P., Lee, C. K., Lai, Z. W., Abubakar, M. H. et al (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21: 101293.
  • Uihlein, A., Schebek, L. (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33:793-802.
  • Ünal, M. Ü., Chowdhury, G., Şener, A. (2020) Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels https://doi.org/10.1080/17597269.2020.1724440
  • Valdes, E., Vilanova, M., Sabio, E., Benalte, M. J. (2011) Clarifying agents effect on the nitrogen composition in must and wine during fermentation. Food Chem 125: 430-437.
  • Zabed, H., Faruq, G., Sahu, J., Azirun, M., Hashim, R. et al (2014) Bioethanol production from fermentable sugar juice. Sci World J 957102.
  • Zhang, L., Zhao, H., Gan, M., Jin, Y., Gao, X. et al (2011) Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresource Technol 102:4573-4579.
  • Zhao, X-Q., Zi, L-H., Bai, F-W., Lin, H-L., Hao, X-M. et al (2011) Bioethanol from lignocellulosic biomass. In Bai F-W, Liu C-G, Huang H, Tsao G T (Editors). Biotechnology in China III: Biofuels and Bioenergy, Springer, Heidelberg, Germany.
  • Zhaofen, L., Donghai, W., Yong-Cheng, S. (2017) Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J Taiwan Inst Chem Eng 70: 229–235.
  • Zinnai, A., Vernturi, F., Sanmartin, C., Quartacci, MF., Andrich, G. (2013) Kinetics of D-glucose and D-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. J Biosci Bioeng 115: 43-49.
  • Zoghlami, A., Paës, G. (2019) Lignocellulosic Biomass: Understanding recalcitrance and predicting hydrolysis. Front Chem 7: 874.

Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus

Year 2022, Volume: 37 Issue: 1, 1 - 8, 30.06.2022
https://doi.org/10.36846/CJAFS.2022.67

Abstract

Dilute sulphuric acid and alkaline pre-treatments (NaOH) followed by enzymatic hydrolysis (Cellic CTec2) were used to release sugars from Miscanthus giganteus. In order to determine optimum pre-treatment conditions pyrolysis was carried out using H2SO4 and NaOH at 0.5 and 1% (w/v) and 120°C and 180°C for 10 and 90 min. Pre-treatments with NaOH (0.5%, w/v), 120°C, 90 min resulted in highest total fermentable sugar concentration (32.78g/L). Ethanolic fermentations were performed at 25°C and 30°C with or without nitrogen source addition using Saccharomyces cerevisiae. Both temperature and nitrogen supplementation affected bioethanol yields from Miscanthus giganteus. Higher bioethanol yields were obtained with nitrogen addition at temperatures. The fermentation at 30°C with nitrogen addition gave the highest bioethanol yield.

References

  • Alam, A, Wang, Y, Liu, F, Kang, H, Tang, S. W. (2020) Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of Wall polymer features and biomass porosity in Miscanthus. Renew Energ 159:1128-1138.
  • Alvira. P, Tomás-Pejó, E, Ballesteros, M, Negro, M. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101 4851-4861.
  • Bajpai, B. (2013) Advances in Bioethanol. Springer, New Delhi, India.
  • Bely, M, Rinaldi, A, Dubourdieu, D. (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96: 507-512.
  • Berthels, N. J., Otero, R. R. C., Bauer, F. F., Thevelein, J. M., Pretorius, I. S. (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4: 683–689.
  • Brosse, N., Sannigrahi, P., Ragauskas, A. (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48: 8328-8334.
  • Cha, Y. L., An, G. H., Yang, J., Moon, Y-H., Yu, G-D. et al (2015) Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renew Energ 80: 259-265.
  • Cheng, K. K., Ge, J. P., Zhang, J. A., Ling, H. Z., Zhou, Y. J. (2007) Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett 29: 1051-1055.
  • Domínguez-Bocanegra, A. R., Torres-Muñoz, J. A., López, R. A. (2015) Production of bioethanol from agro-industrial wastes. Fuel 149: 85-89.
  • Dubis, B., Bułkowska, K., Lewandowska, M., Szemplinski, W., Jankowski, K. J. et al (2017) Effect of different nitrogen fertilizer treatments on the conversion of Miscanthus x giganteus to ethanol. Bioresour Technol 243: 731–737.
  • Galbe, M., Zacchi, G. (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 46:70-78.
  • Gutiérrez, A., Chiva, R., Sancho, M., Beltra,n G., Arroyo-López, F. N. et al (2012) Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol 31: 25-32.
  • Hahn-Hägerda, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., Zacchi, G. (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549-556.
  • Han, M., Kim, Y., Koo, B. C., Choi, G. W. (2011) Bioethanol production by Miscanthus as a lignocellulosic biomass: Focus on high efficiency conversion to glucose and ethanol. Bioresources 6:1939-1953.
  • Hu, F., Ragauskas, A. (2014) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. Rsc. Advances. 4: 317-4323. Jambo, S. A., Abdulla, R. S., Azhar, H. M., Marbawi, H., Gansau, J. A. et al (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756-769.
  • Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., Laopaiboon, P. (2009) Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technol 100: 4176-4182.
  • Li, X., Kim, T. H., Nghiem, N. P. (2010) Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technol 101: 5910-5916.
  • Moon, S-K., Kim, S. W., Choi, G-W. (2012) Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 157: 584-589.
  • Nashiruddin, N. I., Mansor, A. F., Rahman, R. A., Ilias, R. M., Yussof, H. W. (2020) Process parameter optimization of pretreated pineapple leaves fiber for enhancement of sugar recovery. Ind Crops Prod 152: 112514.
  • Nlewem, K. C., Thrash, M. E. (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technol 101: 5426-5430.
  • Raghavi, S., Sindhu, R., Binod, P., Gnansounou, E., Pandey, A. (2016) Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technol 199:202-210.
  • Reddy, P. K., Vijay, M., Kusuma, M., Ramesh, K. V. (2021) Optimum parameters for production of ethanol from synthetic molasses by Saccharomyces cerevisiae. Mater Today: Proceedings 46: 154-156.
  • Schwarz, L. V., Marcon, A. R., Delamare, A. P. L., Echeverrigaray, S. (2021). Influence of nitrogen, minerals and vitamins supplementation on honey wine production using response surface methodology. J Apic Res 60: 57-66.
  • Sharma, B., Laroche, C., Dussap, C. G. (2020) Comprehensive assessment of 2G bioethanol production. Bioresource Technol 313:1-9. Sivamani, S., Baskar, R. (2015) Optimization of bioethanol production from cassava peel using statistical experimental design. Environ Prog Sustain 34 567-574.
  • Sturgeon, J. Q., Bohlscheid, J. C., Edwards, C. G. (2013) The effect of nitrogen source on yeast metabolism and H2S formation. J Wine Res 24: 182–194. Tan, J. S., Phapugrangkul, P., Lee, C. K., Lai, Z. W., Abubakar, M. H. et al (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21: 101293.
  • Uihlein, A., Schebek, L. (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33:793-802.
  • Ünal, M. Ü., Chowdhury, G., Şener, A. (2020) Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels https://doi.org/10.1080/17597269.2020.1724440
  • Valdes, E., Vilanova, M., Sabio, E., Benalte, M. J. (2011) Clarifying agents effect on the nitrogen composition in must and wine during fermentation. Food Chem 125: 430-437.
  • Zabed, H., Faruq, G., Sahu, J., Azirun, M., Hashim, R. et al (2014) Bioethanol production from fermentable sugar juice. Sci World J 957102.
  • Zhang, L., Zhao, H., Gan, M., Jin, Y., Gao, X. et al (2011) Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresource Technol 102:4573-4579.
  • Zhao, X-Q., Zi, L-H., Bai, F-W., Lin, H-L., Hao, X-M. et al (2011) Bioethanol from lignocellulosic biomass. In Bai F-W, Liu C-G, Huang H, Tsao G T (Editors). Biotechnology in China III: Biofuels and Bioenergy, Springer, Heidelberg, Germany.
  • Zhaofen, L., Donghai, W., Yong-Cheng, S. (2017) Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J Taiwan Inst Chem Eng 70: 229–235.
  • Zinnai, A., Vernturi, F., Sanmartin, C., Quartacci, MF., Andrich, G. (2013) Kinetics of D-glucose and D-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. J Biosci Bioeng 115: 43-49.
  • Zoghlami, A., Paës, G. (2019) Lignocellulosic Biomass: Understanding recalcitrance and predicting hydrolysis. Front Chem 7: 874.
There are 34 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Kouame Fulbert Oussou This is me 0000-0003-1663-4959

Mustafa Ümit Ünal 0000-0002-2686-5286

Aysun Şener Gedük This is me 0000-0001-5306-6722

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 37 Issue: 1

Cite

APA Oussou, K. F., Ünal, M. Ü., & Gedük, A. Ş. (2022). Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 37(1), 1-8. https://doi.org/10.36846/CJAFS.2022.67
AMA Oussou KF, Ünal MÜ, Gedük AŞ. Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus. Çukurova J. Agric. Food. Sciences. June 2022;37(1):1-8. doi:10.36846/CJAFS.2022.67
Chicago Oussou, Kouame Fulbert, Mustafa Ümit Ünal, and Aysun Şener Gedük. “Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 37, no. 1 (June 2022): 1-8. https://doi.org/10.36846/CJAFS.2022.67.
EndNote Oussou KF, Ünal MÜ, Gedük AŞ (June 1, 2022) Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus. Çukurova Tarım ve Gıda Bilimleri Dergisi 37 1 1–8.
IEEE K. F. Oussou, M. Ü. Ünal, and A. Ş. Gedük, “Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus”, Çukurova J. Agric. Food. Sciences, vol. 37, no. 1, pp. 1–8, 2022, doi: 10.36846/CJAFS.2022.67.
ISNAD Oussou, Kouame Fulbert et al. “Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus”. Çukurova Tarım ve Gıda Bilimleri Dergisi 37/1 (June 2022), 1-8. https://doi.org/10.36846/CJAFS.2022.67.
JAMA Oussou KF, Ünal MÜ, Gedük AŞ. Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus. Çukurova J. Agric. Food. Sciences. 2022;37:1–8.
MLA Oussou, Kouame Fulbert et al. “Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 37, no. 1, 2022, pp. 1-8, doi:10.36846/CJAFS.2022.67.
Vancouver Oussou KF, Ünal MÜ, Gedük AŞ. Effect of Fermentation Parameters on Bioethanol Yield from Miscanthus. Çukurova J. Agric. Food. Sciences. 2022;37(1):1-8.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.