Research Article
BibTex RIS Cite

Raylı Sistemlerde Kullanılacak Depolama Aygıtı Ödünleşim Seçimi ve Yatırım Kararı

Year 2021, Issue: 13, 76 - 85, 31.01.2021

Abstract

Raylı sistemlerdeki enerji depolama sistemlerinde ilk akla gelen, rejeneratif frenleme enerjisini depolayarak daha sonra trenin hem kendi hem de hattaki diğer trenler için enerji sağlayabilmesidir. Dirençlerde yakılan, israf olan bu enerjiyi kurtarmak; hem çevresel hem de ekonomik olarak oldukça büyük bir faydaya sahiptir. Ayrıca voltaj düşüşlerinin ve yük dalgalanmalarının da önüne geçilebilmesi bu alanda yapılacak çalışmalara büyük önem atfetmektedir.

Dünyada raylı sistemlerde enerji depolama sadece teorik olarak kalmamış uygulaması da var olan bir çalışma alanıdır. Ancak bu tarz sistemlerin ödünleşim adı verilen iki veya daha fazla faydalı girdiden birinin diğerine tercih edilmesi, başka bir deyişle belli bir pozitifi çıktıyı diğerine üstün tuttuğu sistemler olduğuna da dikkat edilmelidir.

Bu çalışmada da bu alandaki en önemli projeler ve kullanılan depolama aygıtları özelliklerine göre ana hatlarıyla verilmiştir. Son olarak ise böyle bir sistemin kurulmasında seçilecek depolama aygıtının hem ekonomik hem çevresel etkilerini dikkate alan ve depolama yeri ve enerji kullanımı açısından yatırımın mantıklı olup olmayacağına karar veren bir akış şeması oluşturulmuştur. Bu akış şeması ile daha önce ele alınmamış raylı sistemlerde enerji depolama sistemine ödünleşim bir yaklaşım getirilmiştir. Böylelikle akış şemasında belirtildiği şekilde farklı depolama aygıtlarının hem emisyon hem yatırım maliyetleri hesaplanarak depolama aygıtı seçim yapılacak ve son olarak da seçilen bu aygıtın boyut olarak sisteme uygun olup olmadığına göre yatırım yapılıp yapılmamasına nihai bir karar verilecektir.

References

  • [1] L.M. Arciniegas, E. Hittinger, “Tradeoffs between revenue and emissions in energy storage operation,” Energy, vol. 143, pp. 1-11, 2018, doi: 10.1016/j.energy.2017.10.123
  • [2] E.S. Hittinger, I.M. Azevedo, “Bulk energy storage increases United States electricity system emissions,” Environ Sci Technol, vol. 49 no. 5, pp. 3203-3210, 2015, doi: 10.1021/es505027p
  • [3] R. Lueken, J. Apt, “The effects of bulk electricity storage on the PJM market,” Energy Syst, vol. 5, no. 4, pp. 677-704, 2014, doi: 10.1007/s12667-014-0123-7
  • [4] R.T. Carson, K. Novan, “The private and social economics of bulk electricity storage,” J Environ Econ Manag, vol. 66 no. 3 pp. 404-423, 2013, doi: 10.1016/j.jeem.2013.06.002
  • [5] M. Arbabzadeh, J.X. Johnson, G.A. Keoleian, “Parameters driving environmental performance of energy storage systems across grid applications,” J Energy Storage, vol. 12, pp. 11-28, 2017, doi: 10.1016/j.est.2017.03.011
  • [6] R.L. Fares, M.E. Webber, “The impacts of storing solar energy in the home to reduce reliance on the utility,” Nat Energy, vol. 2, no. 17001, pp. 1-11, 2017, doi: 10.1038/nenergy.2017.1
  • [7] R. Sioshansi, “Emissions impacts of wind and energy storage in a market environment,” Environ Sci Technol, vol. 45, no. 24, pp. 10728-35, 2011, doi: 10.1021/es2007353
  • [8] H.S. de Boer, L. Grond, H. Moll, R. Benders, “The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels,” Energy, vol. 72, pp. 360-70, 2014, doi: 10.1016/j.energy.2014.05.047
  • [9] Y. Lin, J.X. Johnson, J.L. Mathieu, “Emissions impacts of using energy storage for power system reserves,” Appl Energy, vol. 168, pp. 444-56, 2016, doi: 10.1016/j.apenergy.2016.01.061
  • [10] M. D. Falvo R. Lamedica, R. Bartoni, G. Maranzano, “Energy saving in metro-transit systems: impact of braking energy management,” Proc. Int. Symp. Power Electronics Electrical Drives Automation and Motion (SPEEDAM), Pisa, 2010, pp. 1374-1380, doi: 10.1109/SPEEDAM.2010.5542105
  • [11] A. Killer, A. Armstorfer, A. E. Diez, H. Biechl, “Ultracapacitor assisted regenerative braking in metropolitan railway systems,” Proc. IEEE Colombian Intelligent Transportation Systems Symp. (CITSS), Bogota, 2012, pp. 1-6, doi: 10.1109/CITSS.2012.6336687
  • [12] M. Steiner, J. Scholten, “Energy storage on board of railway vehicles,” EPE, Dresden, 2005, pp. 10 pp.-P.10, doi: 10.1109/EPE.2005.219410
  • [13] P. Barrade, S. Pittet, A. Rufer, “Energy storage system using a series connection of supercapacitors with an active device for equalising the voltages,” IPEC, Tokyo, 2000.
  • [14] B. Engel, “The Innovative traction system with the flywheel of the LIREX,” WCRR, Köln, 2001.
  • [15] S. Torre, A.J. Sánchez-Racero, J.A. Aguado, M. Reyes, “Optimal sizing of energy storage for regenerative braking in electric railway systems,” IEEE Transactions On Power Systems, Vol. 30, No. 3, pp. 1492–1500, 2015, doi: 10.1109/TPWRS.2014.2340911
  • [16] Bombardier Transportation, “Eco Active Technology,” 2020. [Online]. Available: https://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/BT/Bombardier-Transportation-ECO4-MITRAC_Hybrid-EN.pdf [Accessed: 01.03.2020]
  • [17] Railway Technology, “Bombardier’s MITRAC: creating a legacy system for energy conservation,” 2020. [Online]. Available: https://www.railway-technology.com/features/bombardier-mitrac-traction-batteries/ [Accessed: 03.04.2020]
  • [18] B. Maher, “Ultracapacitors provide cost and energy savings for public transportation applications,” Battery Power Prod. Technol. Mag., vol. 10, no. 6, pp. 1–2, 2006, doi: 10.1109/ICCEP.2007.384188
  • [19] Railway Technology, “Siemens to install Sitras SES Energy Storage Unit on TriMet light rail line,” 2013. [Online]. Available: https://www.railway-technology.com/news/newssiemens-install-sitras-ses-energy-storage-unit-trimet-light-rail-line [Accessed: 03.04.2020]
  • [20] J.P. Moskowitz, J.L. Cohuau, “STEEM: ALSTOM and RATP experience of supercapacitors in tramway operation,” Proc. Conf. IEEE Vehicle Power and Propulsion Conf. (VPPC), France, 2010, pp. 1–5, doi: 10.1109/VPPC.2010.5729152
  • [21] Railway Gazette International, “Supercapacitors to be tested on Paris STEEM tram,” 2009. [Online]. Available: https://www.railwaygazette.com/supercapacitors-to-be-tested-on-paris- steem%20tram/34187.article [Accessed: 03.04.2020]
  • [22] C. Mostert, B. Ostrander, S. Bringezu, and T. Kneiske, “Comparing electrical energy storage technologies regarding their material and carbon footprint,” Energies, vol. 11, no. 12, pp. 3386, 2018, doi: 10.3390/en11123386
  • [23] Hydro Wires, “Energy Storage Technology and Cost Characterization Report,” 2019. [Online]. Available: https://energystorage.pnnl.gov/pdf/PNNL-28866.pdf [Accessed: 11.09.2020]

Tradeoff Selection of Storage Device in Rail Systems and Investment Decision

Year 2021, Issue: 13, 76 - 85, 31.01.2021

Abstract

The first thing that comes to mind in energy storage systems in rail systems is storing regenerative braking energy. Thereby, the train can provide energy for both itself and other trains on the line. It has great benefits both environmentally and economically to save this wasted energy that generally has to be changed to heat energy in the resistors. However, in addition to this benefit, the ability to prevent voltage drops and load fluctuations attaches great importance to studies that will be realized in this area.

Energy storage in rail systems in the world is not only a theoretical study but also there are many applications. However, it should be noted that such systems are the preference of one of two or more useful inputs called trade-offs, in other words, systems in which one positive output is superior to the other.
In this study, the most important projects and the storage devices used in these projects are outlined according to their characteristics. Finally, an algorithm has been created that takes into account both the economic and environmental effects of the storage device to be selected in regenerative energy then decides whether the investment will be reasonable or not in terms of storage location and energy use. With this flow chart, a tradeoff approach to energy storage system in rail systems, which has not been addressed before, is declared. Thus, as indicated in the flow chart, the storage device will be selected by calculating both the emission and investment costs of different storage devices, and finally, a final decision will be made whether to invest or not, depending on whether this device is suitable for the system in terms of size.

References

  • [1] L.M. Arciniegas, E. Hittinger, “Tradeoffs between revenue and emissions in energy storage operation,” Energy, vol. 143, pp. 1-11, 2018, doi: 10.1016/j.energy.2017.10.123
  • [2] E.S. Hittinger, I.M. Azevedo, “Bulk energy storage increases United States electricity system emissions,” Environ Sci Technol, vol. 49 no. 5, pp. 3203-3210, 2015, doi: 10.1021/es505027p
  • [3] R. Lueken, J. Apt, “The effects of bulk electricity storage on the PJM market,” Energy Syst, vol. 5, no. 4, pp. 677-704, 2014, doi: 10.1007/s12667-014-0123-7
  • [4] R.T. Carson, K. Novan, “The private and social economics of bulk electricity storage,” J Environ Econ Manag, vol. 66 no. 3 pp. 404-423, 2013, doi: 10.1016/j.jeem.2013.06.002
  • [5] M. Arbabzadeh, J.X. Johnson, G.A. Keoleian, “Parameters driving environmental performance of energy storage systems across grid applications,” J Energy Storage, vol. 12, pp. 11-28, 2017, doi: 10.1016/j.est.2017.03.011
  • [6] R.L. Fares, M.E. Webber, “The impacts of storing solar energy in the home to reduce reliance on the utility,” Nat Energy, vol. 2, no. 17001, pp. 1-11, 2017, doi: 10.1038/nenergy.2017.1
  • [7] R. Sioshansi, “Emissions impacts of wind and energy storage in a market environment,” Environ Sci Technol, vol. 45, no. 24, pp. 10728-35, 2011, doi: 10.1021/es2007353
  • [8] H.S. de Boer, L. Grond, H. Moll, R. Benders, “The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels,” Energy, vol. 72, pp. 360-70, 2014, doi: 10.1016/j.energy.2014.05.047
  • [9] Y. Lin, J.X. Johnson, J.L. Mathieu, “Emissions impacts of using energy storage for power system reserves,” Appl Energy, vol. 168, pp. 444-56, 2016, doi: 10.1016/j.apenergy.2016.01.061
  • [10] M. D. Falvo R. Lamedica, R. Bartoni, G. Maranzano, “Energy saving in metro-transit systems: impact of braking energy management,” Proc. Int. Symp. Power Electronics Electrical Drives Automation and Motion (SPEEDAM), Pisa, 2010, pp. 1374-1380, doi: 10.1109/SPEEDAM.2010.5542105
  • [11] A. Killer, A. Armstorfer, A. E. Diez, H. Biechl, “Ultracapacitor assisted regenerative braking in metropolitan railway systems,” Proc. IEEE Colombian Intelligent Transportation Systems Symp. (CITSS), Bogota, 2012, pp. 1-6, doi: 10.1109/CITSS.2012.6336687
  • [12] M. Steiner, J. Scholten, “Energy storage on board of railway vehicles,” EPE, Dresden, 2005, pp. 10 pp.-P.10, doi: 10.1109/EPE.2005.219410
  • [13] P. Barrade, S. Pittet, A. Rufer, “Energy storage system using a series connection of supercapacitors with an active device for equalising the voltages,” IPEC, Tokyo, 2000.
  • [14] B. Engel, “The Innovative traction system with the flywheel of the LIREX,” WCRR, Köln, 2001.
  • [15] S. Torre, A.J. Sánchez-Racero, J.A. Aguado, M. Reyes, “Optimal sizing of energy storage for regenerative braking in electric railway systems,” IEEE Transactions On Power Systems, Vol. 30, No. 3, pp. 1492–1500, 2015, doi: 10.1109/TPWRS.2014.2340911
  • [16] Bombardier Transportation, “Eco Active Technology,” 2020. [Online]. Available: https://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/BT/Bombardier-Transportation-ECO4-MITRAC_Hybrid-EN.pdf [Accessed: 01.03.2020]
  • [17] Railway Technology, “Bombardier’s MITRAC: creating a legacy system for energy conservation,” 2020. [Online]. Available: https://www.railway-technology.com/features/bombardier-mitrac-traction-batteries/ [Accessed: 03.04.2020]
  • [18] B. Maher, “Ultracapacitors provide cost and energy savings for public transportation applications,” Battery Power Prod. Technol. Mag., vol. 10, no. 6, pp. 1–2, 2006, doi: 10.1109/ICCEP.2007.384188
  • [19] Railway Technology, “Siemens to install Sitras SES Energy Storage Unit on TriMet light rail line,” 2013. [Online]. Available: https://www.railway-technology.com/news/newssiemens-install-sitras-ses-energy-storage-unit-trimet-light-rail-line [Accessed: 03.04.2020]
  • [20] J.P. Moskowitz, J.L. Cohuau, “STEEM: ALSTOM and RATP experience of supercapacitors in tramway operation,” Proc. Conf. IEEE Vehicle Power and Propulsion Conf. (VPPC), France, 2010, pp. 1–5, doi: 10.1109/VPPC.2010.5729152
  • [21] Railway Gazette International, “Supercapacitors to be tested on Paris STEEM tram,” 2009. [Online]. Available: https://www.railwaygazette.com/supercapacitors-to-be-tested-on-paris- steem%20tram/34187.article [Accessed: 03.04.2020]
  • [22] C. Mostert, B. Ostrander, S. Bringezu, and T. Kneiske, “Comparing electrical energy storage technologies regarding their material and carbon footprint,” Energies, vol. 11, no. 12, pp. 3386, 2018, doi: 10.3390/en11123386
  • [23] Hydro Wires, “Energy Storage Technology and Cost Characterization Report,” 2019. [Online]. Available: https://energystorage.pnnl.gov/pdf/PNNL-28866.pdf [Accessed: 11.09.2020]
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Article
Authors

Mine Sertsöz 0000-0003-1641-9191

Publication Date January 31, 2021
Submission Date October 23, 2020
Published in Issue Year 2021 Issue: 13

Cite

IEEE M. Sertsöz, “Raylı Sistemlerde Kullanılacak Depolama Aygıtı Ödünleşim Seçimi ve Yatırım Kararı”, Demiryolu Mühendisliği, no. 13, pp. 76–85, January 2021.