Research Article
BibTex RIS Cite

Freight Transport Capacity Analysis for Shuttle Freight Trains in Dedicated Railway Lines Using Micro-Simulation

Year 2021, Issue: 14, 202 - 216, 31.07.2021
https://doi.org/10.47072/demiryolu.935335

Abstract

In recent years with the emergence of the dry port concept, benefits have been achieved such as regulation of cargo flow and reducing congestion in dry ports, freight villages and ports. The use of railway transportation for the establishment of a regular freight flow between ports and dry ports has been increasing in recent years for providing the benefits of dry ports and freight villages holistically. In this study, a micro simulation-assisted method was developed and implemented in a case study to calculate the transportation capacity of the shuttle trains for providing a high capacity freight transportation between these facilities. The freight transport capacity of the railway corridor was presented by demonstrating calculations for locomotive types, wagon numbers and locomotive pulls on a sample line of a typical port. Train movements were modelled with using a microsimulation software. In this study, it has been concluded that the use of electric locomotives with higher traction power may contribute to the establishment of higher freight transport capacity compared to diesel locomotives. At the same time, it has been shown that more realistic travel time and capacity calculations can be made by using micro-simulation method and locomotive pull calculations. The case study indicated for a 8 hours shuttle train operation period, electric locomotive provide %6.25 more transport capacity compared with the diesel-electric locomotive considering 4 locomotives in operation.

References

  • [1] A. Carboni ve F. Orsini, “Dry ports and related environmental benefits: a case study in Italy,” Case Studies on Transport Policy, vol. 8, no. 2, pp. 416–428, Jun. 2020, doi: 10.1016/j.cstp.2020.05.009.
  • [2] M. S. Yıldırım, M. Karaşahin, ve Ü. Gökkuş, “Scheduling of the shuttle freight train services for dry ports using multimethod simulation–optimization approach,” Int J Civ Eng, Aug. 2020, doi: 10.1007/s40999-020-00553-0.
  • [3] R. Elbert ve D. Reinhardt, “Increasing capacity utilization of shuttle trains in intermodal transport by investing in transshipment technologies for non-cranable semi-trailers,” in 2016 Winter Simulation Conference (WSC), Washington, DC, USA, Dec. 2016, pp. 2358–2369. doi: 10.1109/WSC.2016.7822276.
  • [4] Y. Chen ve H. Shi, “Capacity analysis of rail container freight shuttle train,” p. 109.
  • [5] “UIC leaflet 406, Capacity,” UIC International Union of Railways, France, 2, 2013.
  • [6] TCRP, “Transit Capacity and Quality of Service Manual, 2nd Edition | Blurbs New | Blurbs | Publications,” Transport Research Board, 2017. Accessed: Apr. 20, 2021. [Online]. Available: http://www.trb.org/Publications/Blurbs/153590.aspx
  • [7] H. Pouryousef, P. Lautala, ve T. White, “Railroad capacity tools and methodologies in the U.S. and Europe,” J. Mod. Transport., vol. 23, no. 1, pp. 30–42, Mar. 2015, doi: 10.1007/s40534-015-0069-z.
  • [8] M. Abril, F. Barber, L. Ingolotti, M. A. Salido, P. Tormos, ve A. Lova, “An assessment of railway capacity,” Transportation Research Part E: Logistics and Transportation Review, vol. 44, no. 5, pp. 774–806, Sep. 2008, doi: 10.1016/j.tre.2007.04.001.
  • [9] S. Binder, Y. Maknoon, ve M. Bierlaire, “The multi-objective railway timetable rescheduling problem,” Transportation Research Part C: Emerging Technologies, vol. 78, pp. 78–94, May 2017, doi: 10.1016/j.trc.2017.02.001.
  • [10] C. Zhang, Y. Gao, L. Yang, U. Kumar, ve Z. Gao, “Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors,” Omega, vol. 87, pp. 86–104, Sep. 2019, doi: 10.1016/j.omega.2018.08.005.
  • [11] “UIC leaflet 406, Capacity,” UIC International Union of Railways, France, 2004.
  • [12] L. M. Gambardella, A. E. Rizzoli, ve P. Funk, “Agent-based planning and simulation of combined rail/road transport,” SIMULATION, vol. 78, no. 5, pp. 293–303, May 2002, doi: 10.1177/0037549702078005551.
  • [13] Z. Taomei, “An agent-based support system for railway station dispatching,” Expert Systems With Applications, p. 14, 2016.
  • [14] V. Singhania ve M. Marinov, “An event-based simulation model for analysing the utilization levels of a railway line in urban area,” PROMET, vol. 29, no. 5, pp. 521–528, Nov. 2017, doi: 10.7307/ptt.v29i5.2306.
  • [15] A. Lindfeldt, “Railway capacity analysis: methods for simulation and evaluation of timetables, delays and infrastructure,” KTH Royal Institute of Technology, Stockholm, 2015.
  • [16] S. Mu ve M. Dessouky, “Scheduling freight trains traveling on complex networks,” Transportation Research Part B: Methodological, vol. 45, no. 7, pp. 1103–1123, Aug. 2011, doi: 10.1016/j.trb.2011.05.021.
  • [17] H. Pouryousef ve P. Lautala, “Hybrid simulation approach for improving railway capacity and train schedules,” Journal of Rail Transport Planning & Management, vol. 5, no. 4, pp. 211–224, Dec. 2015, doi: 10.1016/j.jrtpm.2015.10.001.
  • [18] C. Meirich ve N. Nießen, “Calculating the maximal number of additional freight trains in a railway network,” Journal of Rail Transport Planning & Management, vol. 6, no. 3, pp. 200–217, Dec. 2016, doi: 10.1016/j.jrtpm.2016.06.005.
  • [19] Ö. Yalçınkaya ve G. Mirac Bayhan, “A feasible timetable generator simulation modelling framework for train scheduling problem,” Simulation Modelling Practice and Theory, vol. 20, no. 1, pp. 124–141, Jan. 2012, doi: 10.1016/j.simpat.2011.09.005.
  • [20] Ö. Akbayir, “Demiryolu Araçlarında Enerji Verimliliği ve Tasarrufu,” 2016, p. 10.
  • [21] M. Ogasa, “Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, pp. 15–20, 2008, doi: 10.1002/tee.20227.
  • [22] H. E. Beni̇, “Lokomotif çekerleri hesaplama yöntemi,” Demiryolu Mühendisliği, Dec. 2020, doi: 10.47072/demiryolu.826780.
  • [23] G. Strahl, “Verfahren zur bestimmung der belastungsgrenzen der dampflokomotiven,” Z. Des. Vereins Dtsch. Ing, vol. 57, 1913.
  • [24] Milli Eğitim Bakanlığı, “Raylı sistemler teknolojisi fren dinamiği ve seyir süresi hesabı.” 2013.
  • [25] Ö. Akbayir ve F. H. Çakir, “Enerji verimliliği için tren direnci formüllerinin karşılaştırılması” p. 15, 2017.
  • [26] S. Y. Sapronova, V. P. Tkachenko, O. V. Fomin, I. I. Kulbovskiy, e E. P. Zub, “Rail Vehicles: The resistance to the movement and the controllability.” 2017.
  • [27] C. Urlu, Demiryolu araçlarının ileri dinamiği. Ankara: TCDD Yayınları, 1999.
  • [28] Google Maps, “Google Maps, 2017.,” 2017.
  • [29] TÜLOMSAŞ, “Tülomsaş Ürün Portföyü,” 2019. https://www.tulomsas.com.tr/tulomsas/urun-portfoyu/
  • [30] A. D. R. Ajansı, “Konteyner Vagonu,” Türkiye Raylı Sistem Araçları Sanayi A.Ş. https://www.turasas.gov.tr/konteyner-vagonu

Ayrılmış Demiryolu Hatlarında Mekik Trenler İçin Mikro-Simülasyon Tabanlı Taşımacılık Kapasitesi Analizi

Year 2021, Issue: 14, 202 - 216, 31.07.2021
https://doi.org/10.47072/demiryolu.935335

Abstract

Son yıllarda dünyada ticaret hacminin artması ile birlikte, lojistik köyler ve kuru limanlar ile limanlardaki yük akışının düzenlenmesi ve sıkışıklığın azaltılması gibi faydalar sağlanmıştır. Bu tesislerin faydalarından bütüncül bir şekilde yararlanmak için liman ve tesisler arasında düzenli bir yük akışının sağlanması gerekmekte, bu amaçla demiryolu yük taşımacılığının kullanımı son yıllarda gittikçe artmaktadır. Bu çalışmada yük aktarma tesisleri arasında yüksek kapasiteli ve güvenilir bir yük taşımacılığı yapılabilmesi amacıyla, mekik trenlerin taşımacılık kapasitesinin hesaplanması için mikro-simülasyon destekli bir yöntem geliştirilmiş ve örnek bir liman için uygulaması yapılmıştır. Dizel elektrikli ve elektrikli lokomotif kullanım senaryoları, farklı vagon sayıları ve örnek bir güzergah için lokomotif çeker hesapları yapılarak tren hareketlerinin mikro-simülasyon yazılımı kullanılarak modellenmesi ile işletme hızları ve sefer süreleri ortaya konmuştur. Sonrasında kesitlerde hesaplanan sefer süreleri kullanılarak farklı tren sayıları için hat taşımacılık kapasitesi belirlenmiştir. Çalışmada daha yüksek cer kuvvetine sahip olan elektrikli lokomotiflerin kullanımının dizel elektrikli lokomotiflere oranla daha yüksek yük taşımacılığı kapasitesinin sağlanmasına katkı sağlayabileceği sonucuna varılmış, aynı zamanda mikro-simülasyon yöntemi ve lokomotif çekim hesapları kullanılarak gerçekçi tren sefer süreleri hesaplanmıştır. Çalışmada yapılan kapasite hesabında ise 8 saatlik operasyon süresi boyunca hat kapasitesinin çalıştırılan tren sayısı ile arttığı ve elektrikli lokomotif kullanımında hat kapasitesinin dizel elektrik lokomotife oranla 4 adet lokomotifin işletimi durumunda %6,25 oranında arttığı görülmüştür.

References

  • [1] A. Carboni ve F. Orsini, “Dry ports and related environmental benefits: a case study in Italy,” Case Studies on Transport Policy, vol. 8, no. 2, pp. 416–428, Jun. 2020, doi: 10.1016/j.cstp.2020.05.009.
  • [2] M. S. Yıldırım, M. Karaşahin, ve Ü. Gökkuş, “Scheduling of the shuttle freight train services for dry ports using multimethod simulation–optimization approach,” Int J Civ Eng, Aug. 2020, doi: 10.1007/s40999-020-00553-0.
  • [3] R. Elbert ve D. Reinhardt, “Increasing capacity utilization of shuttle trains in intermodal transport by investing in transshipment technologies for non-cranable semi-trailers,” in 2016 Winter Simulation Conference (WSC), Washington, DC, USA, Dec. 2016, pp. 2358–2369. doi: 10.1109/WSC.2016.7822276.
  • [4] Y. Chen ve H. Shi, “Capacity analysis of rail container freight shuttle train,” p. 109.
  • [5] “UIC leaflet 406, Capacity,” UIC International Union of Railways, France, 2, 2013.
  • [6] TCRP, “Transit Capacity and Quality of Service Manual, 2nd Edition | Blurbs New | Blurbs | Publications,” Transport Research Board, 2017. Accessed: Apr. 20, 2021. [Online]. Available: http://www.trb.org/Publications/Blurbs/153590.aspx
  • [7] H. Pouryousef, P. Lautala, ve T. White, “Railroad capacity tools and methodologies in the U.S. and Europe,” J. Mod. Transport., vol. 23, no. 1, pp. 30–42, Mar. 2015, doi: 10.1007/s40534-015-0069-z.
  • [8] M. Abril, F. Barber, L. Ingolotti, M. A. Salido, P. Tormos, ve A. Lova, “An assessment of railway capacity,” Transportation Research Part E: Logistics and Transportation Review, vol. 44, no. 5, pp. 774–806, Sep. 2008, doi: 10.1016/j.tre.2007.04.001.
  • [9] S. Binder, Y. Maknoon, ve M. Bierlaire, “The multi-objective railway timetable rescheduling problem,” Transportation Research Part C: Emerging Technologies, vol. 78, pp. 78–94, May 2017, doi: 10.1016/j.trc.2017.02.001.
  • [10] C. Zhang, Y. Gao, L. Yang, U. Kumar, ve Z. Gao, “Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors,” Omega, vol. 87, pp. 86–104, Sep. 2019, doi: 10.1016/j.omega.2018.08.005.
  • [11] “UIC leaflet 406, Capacity,” UIC International Union of Railways, France, 2004.
  • [12] L. M. Gambardella, A. E. Rizzoli, ve P. Funk, “Agent-based planning and simulation of combined rail/road transport,” SIMULATION, vol. 78, no. 5, pp. 293–303, May 2002, doi: 10.1177/0037549702078005551.
  • [13] Z. Taomei, “An agent-based support system for railway station dispatching,” Expert Systems With Applications, p. 14, 2016.
  • [14] V. Singhania ve M. Marinov, “An event-based simulation model for analysing the utilization levels of a railway line in urban area,” PROMET, vol. 29, no. 5, pp. 521–528, Nov. 2017, doi: 10.7307/ptt.v29i5.2306.
  • [15] A. Lindfeldt, “Railway capacity analysis: methods for simulation and evaluation of timetables, delays and infrastructure,” KTH Royal Institute of Technology, Stockholm, 2015.
  • [16] S. Mu ve M. Dessouky, “Scheduling freight trains traveling on complex networks,” Transportation Research Part B: Methodological, vol. 45, no. 7, pp. 1103–1123, Aug. 2011, doi: 10.1016/j.trb.2011.05.021.
  • [17] H. Pouryousef ve P. Lautala, “Hybrid simulation approach for improving railway capacity and train schedules,” Journal of Rail Transport Planning & Management, vol. 5, no. 4, pp. 211–224, Dec. 2015, doi: 10.1016/j.jrtpm.2015.10.001.
  • [18] C. Meirich ve N. Nießen, “Calculating the maximal number of additional freight trains in a railway network,” Journal of Rail Transport Planning & Management, vol. 6, no. 3, pp. 200–217, Dec. 2016, doi: 10.1016/j.jrtpm.2016.06.005.
  • [19] Ö. Yalçınkaya ve G. Mirac Bayhan, “A feasible timetable generator simulation modelling framework for train scheduling problem,” Simulation Modelling Practice and Theory, vol. 20, no. 1, pp. 124–141, Jan. 2012, doi: 10.1016/j.simpat.2011.09.005.
  • [20] Ö. Akbayir, “Demiryolu Araçlarında Enerji Verimliliği ve Tasarrufu,” 2016, p. 10.
  • [21] M. Ogasa, “Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, pp. 15–20, 2008, doi: 10.1002/tee.20227.
  • [22] H. E. Beni̇, “Lokomotif çekerleri hesaplama yöntemi,” Demiryolu Mühendisliği, Dec. 2020, doi: 10.47072/demiryolu.826780.
  • [23] G. Strahl, “Verfahren zur bestimmung der belastungsgrenzen der dampflokomotiven,” Z. Des. Vereins Dtsch. Ing, vol. 57, 1913.
  • [24] Milli Eğitim Bakanlığı, “Raylı sistemler teknolojisi fren dinamiği ve seyir süresi hesabı.” 2013.
  • [25] Ö. Akbayir ve F. H. Çakir, “Enerji verimliliği için tren direnci formüllerinin karşılaştırılması” p. 15, 2017.
  • [26] S. Y. Sapronova, V. P. Tkachenko, O. V. Fomin, I. I. Kulbovskiy, e E. P. Zub, “Rail Vehicles: The resistance to the movement and the controllability.” 2017.
  • [27] C. Urlu, Demiryolu araçlarının ileri dinamiği. Ankara: TCDD Yayınları, 1999.
  • [28] Google Maps, “Google Maps, 2017.,” 2017.
  • [29] TÜLOMSAŞ, “Tülomsaş Ürün Portföyü,” 2019. https://www.tulomsas.com.tr/tulomsas/urun-portfoyu/
  • [30] A. D. R. Ajansı, “Konteyner Vagonu,” Türkiye Raylı Sistem Araçları Sanayi A.Ş. https://www.turasas.gov.tr/konteyner-vagonu
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Article
Authors

Mehmet Sinan Yıldırım 0000-0003-0516-0014

Ümit Gökkuş 0000-0003-2505-1456

Mustafa Karasahin 0000-0003-0469-4348

Publication Date July 31, 2021
Submission Date May 9, 2021
Published in Issue Year 2021 Issue: 14

Cite

IEEE M. S. Yıldırım, Ü. Gökkuş, and M. Karasahin, “Ayrılmış Demiryolu Hatlarında Mekik Trenler İçin Mikro-Simülasyon Tabanlı Taşımacılık Kapasitesi Analizi”, Demiryolu Mühendisliği, no. 14, pp. 202–216, July 2021, doi: 10.47072/demiryolu.935335.