Research Article
BibTex RIS Cite

Evaluation of Railway Transport Safety Measures using Picture Fuzzy SWARA Approach

Year 2024, Issue: 20, 107 - 122, 31.07.2024
https://doi.org/10.47072/demiryolu.1465431

Abstract

Railway safety is crucial for ensuring the well-being of passengers and workers, reducing the chances of malfunctions during operations, and ensuring efficient railway functioning. Identifying and prioritizing safety measures in railway transportation is a foundational step in identifying potential risks within the sector and effectively managing them. Based on a thorough review of the related literature and input from experts, eight different safety measures were identified. To account for the various factors involved in evaluating railway safety, fuzzy multi-criteria decision-making methods were used. In special, the Picture Fuzzy SWARA method was utilized, as it better incorporates the uncertainty in decision makers' subjective evaluations and expert opinions in the weighting process. Additionally, sensitivity analysis was conducted to determine the impact of each criterion on the decision-making process when assigned different weights. Furthermore, a comparison analysis was performed to check the effectiveness and robustness of the calculations of the Picture Fuzzy SWARA method used in the study. The literature review revealed that there is no study comprehensively addressing railway safety measures and ranking them using the Picture Fuzzy SWARA method, highlighting the significant contribution of this study to the literature. The findings revealed that the top three safety measures for railway transportation are periodic maintenance of railway infrastructure, maintenance of the superstructure, and maintenance of railway vehicles. The results of this study will be valuable for decision makers and researchers in the railway sector, as it introduces a useful method and suggests effective safety measures.

References

  • [1] European Environment Agency, “Passenger and freight transport demand in Europe,” 2021. [Online]. Available: https://www.eea.europa.eu/data-and-maps/indicators/passenger-and-freighttransport-demand/assessment-1 [Accessed March 20, 2024]
  • [2] Türkiye Cumhuriyeti Devlet Demiryolları İşletmesi Genel Müdürlüğü, Trafik Dairesi Başkanlığı, “Kaza Araştırma ve İnceleme Yönergesi,” 2014. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/mevzuat/mulga/yonergeler/kazaaras.doc [Accessed March 20, 2024]
  • [3] TCDD, “Yıllara Göre TCDD İstatistik Yıllığı,” 2022. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/istrapor/20182022.pdf [Accessed March 25, 2024]
  • [4] R. Liu, & N. Moini, “Benchmarking transportation safety performance via shift-share approaches,” Journal of Transportation Safety & Security, vol. 7, no. 2, pp. 124-137, Nov. 2014.
  • [5] F. Wegman, J. Commandeur, E. Doveh, V. Eksler, V. Gitelman, S. Hakkert, D. Lynam, & S. Oppe, “SUNflowerNext: Towards a composite road safety performance index,” Deliverable, vol. 6, no. 16, 2008.
  • [6] P. A. Singleton, & L. Wang, “Safety and security in discretionary travel decision making: Focus on active travel mode and destination choice,” Transportation Research Record, vol. 2430, no. 1, pp. 47-58, Jan. 2014.
  • [7] A. Matsumoto, Y. Michitsuji, Y. Ichiyanagi, Y. Sato, H. Ohno, M. Tanimoto, A. Iwamoto, & T. Nakai, “Safety measures against flange-climb derailment in sharp curve-considering friction coefficient between wheel and rail,” Wear, vol. 432, 202931, Aug. 2019.
  • [8] D. M. Z. Islam, K. Laparidou, & A. Burgess, “Cost effective future derailment mitigation techniques for rail freight traffic management in Europe,” Transportation Research Part C: Emerging Technologies, vol. 70, pp. 185-196, Sep. 2016.
  • [9] H. Sümbül, A. Böğrek, A. Tunçer, “Demiryolu ulaşım güvenliği için makinist uyarım sistemi kavramsal tasarımı ve simülasyonu,” Demiryolu Mühendisliği, no. 14, pp. 1-13, July. 2021. doi: 10.47072/demiryolu.832113
  • [10] J. Li, X. Xu, Z. Yao, & Y. Lu, “Improving service quality with the fuzzy TOPSIS method: a case study of the Beijing rail transit system,” IEEE Access, vol. 7, pp.114271-114284, Aug. 2019, doi: 10.1109/ACCESS.2019.2932779
  • [11] A. Blagojević, S. Kasalica, Ž.Stević, G. Tričković, & V. Pavelkić, “Evaluation of safety degree at railway crossings in order to achieve sustainable traffic management: A novel integrated fuzzy MCDM model,” Sustainability, vol. 13, no. 2, pp.832, Jan.2021.
  • [12] M.B. Bouraima, Y. Qiu, Ž. Stević, & V. Simić, “Assessment of alternative railway systems for sustainable transportation using an integrated IRN SWARA and IRN CoCoSo model,” Socio-Economic Planning Sciences, vol. 86, 101475, April 2023.
  • [13] G. Ćirović & D. Pamučar (2013). “Decision support model for prioritizing railway level crossings for safety improvements: Application of the adaptive neuro-fuzzy system.” Expert Systems with Applications, 40(6), 2208-2223.
  • [14] M. An, Y. Chen & C. J. Baker (2011). “A fuzzy reasoning and fuzzy-analytical hierarchy process based approach to the process of railway risk information: A railway risk management system.” Information Sciences, 181(18), 3946-3966.
  • [15] V. Sangiorgio, A. M. Mangini & I. Precchiazzi (2020). “A new index to evaluate the safety performance level of railway transportation systems.” Safety science, 131, 104921.
  • [16] L.A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, June 1965.
  • [17] K.T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, Aug. 1986.
  • [18] B. C. Cuong, & V. Kreinovich, “Picture fuzzy sets,” Journal of computer science and cybernetics, vol. 30, no.4, pp.409-420, Feb. 2014.
  • [19] L.H. Son, “Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures,” Fuzzy Optimization and Decision Making, vol. 16, pp. 359-378, Sep. 2016.
  • [20] P.H. Thong & L. H. Son (2016). “Picture fuzzy clustering: a new computational intelligence method.” Soft computing, 20(9), 3549-3562.
  • [21] H. Garg, “Some picture fuzzy aggregation operators and their applications to multicriteria decision-making,” Arabian Journal for Science and Engineering, vol. 42, no. 12, pp. 5275-5290, Jun. 2017.
  • [22] V. Keršuliene, E. K. Zavadskas, & Z. Turskis, “Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA),” Journal of business economics and management, vol. 11, no. 2, pp. 243-258, Jun 2010.
  • [23] M. K. Saraji & D. Streimikiene (2022). “Evaluating the circular supply chain adoption in manufacturing sectors: A picture fuzzy approach.” Technology in Society, 70, 102050.
  • [24] J. Feng, J. Xu, W. Liao & Y. Liu (2017). “Review on the traction system sensor technology of a rail transit train.” Sensors, 17(6), 1356.
  • [25] Y.K. Al-Douri, P. Tretten & R. Karim (2016). “Improvement of railway performance: a study of Swedish railway infrastructure.” Journal of Modern Transportation, 24, 22-37.
  • [26] E. Nedeliaková, J. Sekulová & I. Nedeliak (2016). “A New Approach to the Identification of Rail Risk at Level Crossing.” Procedia Engineering, 134, 40-47.
  • [27] B. Van Weyenberge, X. Deckers, R. Caspeele & B. Merci (2016). “Development of a risk assessment method for life safety in case of fire in rail tunnels.” Fire technology, 52, 1465-1479.
  • [28] P. Meksavang, H. Shi, S.M. Lin & H.C. Liu (2019). “An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry.” Symmetry, 11(4), 468.
  • [29] T.L. Saaty, J.P. Bennett (1977). “A theory of analytical hierarchies applied to political candidacy.” Behavioral Science, 22, 237-245.
  • [30] E.G. Crawford & R.L. Kift (2018). “Keeping track of railway safety and the mechanisms for risk.” Safety science, 110, 195-205.

Demiryolu Ulaşım Emniyet Önlemlerinin Resim Bulanık SWARA Yöntemiyle Değerlendirilmesi

Year 2024, Issue: 20, 107 - 122, 31.07.2024
https://doi.org/10.47072/demiryolu.1465431

Abstract

Demiryolu emniyeti, yolcuların ve çalışanların emniyetini garanti altına almak, seyrüsefer esnasında arıza yaşanma olasılığını azaltmak ve demiryolu işletmelerinin sorunsuz bir şekilde faaliyet göstermesini sağlamak açısından kritik bir öneme sahiptir. Demiryolu ulaşım emniyet önlemlerinin belirlenmesi ve sıralanması, demiryolu sektörünün barındırdığı çeşitli emniyet risklerinin ortaya çıkartılması ve bu risklerin yönetilebilmesi için temel bir adım olacaktır. Bu çalışmanın amacı, bir bulanık çok kriterli karar verme yöntemi kullanarak demiryolu emniyet önlemlerini değerlendirmektir. Çalışma kapsamında 8 farklı demiryolu ulaşım emniyet önlemi yazın taraması ve uzman ekibin görüşleri doğrultusunda belirlenmiştir. Değerlendirme için, karar vericilerin öznel değerlendirmelerindeki belirsizliği daha iyi modelleyen ve uzman görüşlerini ağırlıklandırma sürecine doğrudan dâhil eden Resim Bulanık SWARA yöntemi kullanılmıştır. Buna ek olarak, çalışma kapsamında farklı ağırlıklar altında her bir ölçütün karar verme süreci üzerindeki etkisini ölçmek amacıyla duyarlılık analizi gerçekleştirilmiştir. Ayrıca, çalışmada uygulanan Resim Bulanık SWARA yöntemine ait hesaplamaların etkinliğini ve sağlamlığını kontrol etmek amacıyla karşılaştırma analizi gerçekleştirilmiştir. Yazın taraması sonucunda, demiryolu emniyet önlemlerini kapsamlı şekilde ele alan ve bu önlemleri Resim Bulanık SWARA yöntemiyle sıralayan bir çalışmanın bulunmaması, bu çalışmanın literatüre önemli bir katkı sağladığını göstermektedir. Çalışmanın bulguları incelendiğinde; demiryolu ulaşım emniyeti açısından demiryolu altyapı periyodik bakımının ilk sırada, üstyapı bakımının ikinci sırada ve demiryolu taşıt bakımının üçüncü sırada öneme sahip olduğu ortaya çıkarılmıştır. Bu çalışmanın sonuçları demiryolu sektöründe çalışan karar vericilere ve araştırmacılara bilgi sağlamakta ve teknolojik olarak nerelere yatırım yapılması gerektiğini gözler önüne sermektedir.

Ethical Statement

Bu makalede bilimsel araştırma ve yayın etiğine uyulmuştur.

Thanks

Çalışma kapsamında uzman görüşlerini bildiren TCDD Modernizasyon Dairesi ve Bakım Dairesi çalışanlarına katkılarından dolayı teşekkür ederim.

References

  • [1] European Environment Agency, “Passenger and freight transport demand in Europe,” 2021. [Online]. Available: https://www.eea.europa.eu/data-and-maps/indicators/passenger-and-freighttransport-demand/assessment-1 [Accessed March 20, 2024]
  • [2] Türkiye Cumhuriyeti Devlet Demiryolları İşletmesi Genel Müdürlüğü, Trafik Dairesi Başkanlığı, “Kaza Araştırma ve İnceleme Yönergesi,” 2014. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/mevzuat/mulga/yonergeler/kazaaras.doc [Accessed March 20, 2024]
  • [3] TCDD, “Yıllara Göre TCDD İstatistik Yıllığı,” 2022. [Online]. Available: https://static.tcdd.gov.tr/webfiles/userfiles/files/istrapor/20182022.pdf [Accessed March 25, 2024]
  • [4] R. Liu, & N. Moini, “Benchmarking transportation safety performance via shift-share approaches,” Journal of Transportation Safety & Security, vol. 7, no. 2, pp. 124-137, Nov. 2014.
  • [5] F. Wegman, J. Commandeur, E. Doveh, V. Eksler, V. Gitelman, S. Hakkert, D. Lynam, & S. Oppe, “SUNflowerNext: Towards a composite road safety performance index,” Deliverable, vol. 6, no. 16, 2008.
  • [6] P. A. Singleton, & L. Wang, “Safety and security in discretionary travel decision making: Focus on active travel mode and destination choice,” Transportation Research Record, vol. 2430, no. 1, pp. 47-58, Jan. 2014.
  • [7] A. Matsumoto, Y. Michitsuji, Y. Ichiyanagi, Y. Sato, H. Ohno, M. Tanimoto, A. Iwamoto, & T. Nakai, “Safety measures against flange-climb derailment in sharp curve-considering friction coefficient between wheel and rail,” Wear, vol. 432, 202931, Aug. 2019.
  • [8] D. M. Z. Islam, K. Laparidou, & A. Burgess, “Cost effective future derailment mitigation techniques for rail freight traffic management in Europe,” Transportation Research Part C: Emerging Technologies, vol. 70, pp. 185-196, Sep. 2016.
  • [9] H. Sümbül, A. Böğrek, A. Tunçer, “Demiryolu ulaşım güvenliği için makinist uyarım sistemi kavramsal tasarımı ve simülasyonu,” Demiryolu Mühendisliği, no. 14, pp. 1-13, July. 2021. doi: 10.47072/demiryolu.832113
  • [10] J. Li, X. Xu, Z. Yao, & Y. Lu, “Improving service quality with the fuzzy TOPSIS method: a case study of the Beijing rail transit system,” IEEE Access, vol. 7, pp.114271-114284, Aug. 2019, doi: 10.1109/ACCESS.2019.2932779
  • [11] A. Blagojević, S. Kasalica, Ž.Stević, G. Tričković, & V. Pavelkić, “Evaluation of safety degree at railway crossings in order to achieve sustainable traffic management: A novel integrated fuzzy MCDM model,” Sustainability, vol. 13, no. 2, pp.832, Jan.2021.
  • [12] M.B. Bouraima, Y. Qiu, Ž. Stević, & V. Simić, “Assessment of alternative railway systems for sustainable transportation using an integrated IRN SWARA and IRN CoCoSo model,” Socio-Economic Planning Sciences, vol. 86, 101475, April 2023.
  • [13] G. Ćirović & D. Pamučar (2013). “Decision support model for prioritizing railway level crossings for safety improvements: Application of the adaptive neuro-fuzzy system.” Expert Systems with Applications, 40(6), 2208-2223.
  • [14] M. An, Y. Chen & C. J. Baker (2011). “A fuzzy reasoning and fuzzy-analytical hierarchy process based approach to the process of railway risk information: A railway risk management system.” Information Sciences, 181(18), 3946-3966.
  • [15] V. Sangiorgio, A. M. Mangini & I. Precchiazzi (2020). “A new index to evaluate the safety performance level of railway transportation systems.” Safety science, 131, 104921.
  • [16] L.A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, June 1965.
  • [17] K.T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, Aug. 1986.
  • [18] B. C. Cuong, & V. Kreinovich, “Picture fuzzy sets,” Journal of computer science and cybernetics, vol. 30, no.4, pp.409-420, Feb. 2014.
  • [19] L.H. Son, “Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures,” Fuzzy Optimization and Decision Making, vol. 16, pp. 359-378, Sep. 2016.
  • [20] P.H. Thong & L. H. Son (2016). “Picture fuzzy clustering: a new computational intelligence method.” Soft computing, 20(9), 3549-3562.
  • [21] H. Garg, “Some picture fuzzy aggregation operators and their applications to multicriteria decision-making,” Arabian Journal for Science and Engineering, vol. 42, no. 12, pp. 5275-5290, Jun. 2017.
  • [22] V. Keršuliene, E. K. Zavadskas, & Z. Turskis, “Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA),” Journal of business economics and management, vol. 11, no. 2, pp. 243-258, Jun 2010.
  • [23] M. K. Saraji & D. Streimikiene (2022). “Evaluating the circular supply chain adoption in manufacturing sectors: A picture fuzzy approach.” Technology in Society, 70, 102050.
  • [24] J. Feng, J. Xu, W. Liao & Y. Liu (2017). “Review on the traction system sensor technology of a rail transit train.” Sensors, 17(6), 1356.
  • [25] Y.K. Al-Douri, P. Tretten & R. Karim (2016). “Improvement of railway performance: a study of Swedish railway infrastructure.” Journal of Modern Transportation, 24, 22-37.
  • [26] E. Nedeliaková, J. Sekulová & I. Nedeliak (2016). “A New Approach to the Identification of Rail Risk at Level Crossing.” Procedia Engineering, 134, 40-47.
  • [27] B. Van Weyenberge, X. Deckers, R. Caspeele & B. Merci (2016). “Development of a risk assessment method for life safety in case of fire in rail tunnels.” Fire technology, 52, 1465-1479.
  • [28] P. Meksavang, H. Shi, S.M. Lin & H.C. Liu (2019). “An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry.” Symmetry, 11(4), 468.
  • [29] T.L. Saaty, J.P. Bennett (1977). “A theory of analytical hierarchies applied to political candidacy.” Behavioral Science, 22, 237-245.
  • [30] E.G. Crawford & R.L. Kift (2018). “Keeping track of railway safety and the mechanisms for risk.” Safety science, 110, 195-205.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Transportation and Traffic, Transportation Engineering
Journal Section Article
Authors

Gözde Bakioğlu 0000-0003-3754-2631

Publication Date July 31, 2024
Submission Date April 5, 2024
Acceptance Date July 8, 2024
Published in Issue Year 2024 Issue: 20

Cite

IEEE G. Bakioğlu, “Demiryolu Ulaşım Emniyet Önlemlerinin Resim Bulanık SWARA Yöntemiyle Değerlendirilmesi”, Demiryolu Mühendisliği, no. 20, pp. 107–122, July 2024, doi: 10.47072/demiryolu.1465431.