Research Article
BibTex RIS Cite

Reliability and Fault Tree Analysis of Metro Line Traction Power Electrification

Year 2025, Issue: 21, 72 - 82, 31.01.2025
https://doi.org/10.47072/demiryolu.1583509

Abstract

One of the most important components of the railway system is the traction power system, which is responsible for providing the necessary energy for train movement. Safe and reliable operation of the DC traction power supply system is the basis of the entire urban railway transportation system. It is very important to conduct research on DC traction power supply system fault analysis, protection and power system reliability assessment. The continuity of railway systems is significantly affected by the performance of power supply. With the development of railway traction power electrification system and the increase in the number of passengers in railway systems, the importance of RAMS concept, Reliability (R), Availability (A), Maintainability (M) and Safety (S) has increased. Therefore, it is necessary to analyze the high reliability of the traction power electrification system and carry out improvement studies. In this article, the index related to the traction power system reliability of Metro Istanbul Inc. is presented and the reliability is evaluated using the Fault Tree Analysis (FTA) approach. In addition, this article provides suggestions for improving the system reliability and increasing the reliability index of traction power electrification.

References

  • [1] S.K. Chen, T.K. Ho ve B.H. Mao, "Reliability evaluations of railway power supplies by fault tree analysis" IET Electric Power Applications, vol 1, pp. 161–172, April 2007.
  • [2] B.H. Ku and J.M. Cha, "Reliability assessment of electric railway substation by using minimal cut sets algorithm," Journal of International Council on Electrical Engineering, vol. 1, no. 2, pp. 135-139, April 2011
  • [3] D. Feng, S. Lin, Q. Yang, X. Lin, Z. He, and W. Li, “Reliability evaluation for traction power supply system of high-speed railway considering relay protection,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 285–298, Mar. 2019
  • [4] H. Hayashiya, M. Masuda, Y. Noda, K. Suzuki, and T. Suzuki, “Reliability analysis of DC traction power supply system for electric railway,” in Proc. 19th Eur. Conf. Power Electron. Appl. (EPE, ECCE Europe), Sep. 2017, pp. 1–6.
  • [5] P. P.D. Meyer, The Reliability of the Electric Transmission Infrastructure in the 21st Century. Piscataway, NJ, USA: IEEE, 2006, p. 1.
  • [6] E. Zio, “Reliability engineering: Old problems and new challenges,” Rel. Eng. Syst. Saf., vol. 94, no. 2, pp. 125–141, Feb. 2009.
  • [7] T. Ölmez, “Energy distribution modelling in railway systems” M.Sc. thesis, Marmara University, Dept. Elect. and Elec. Eng., İstanbul, 2020
  • [8] Metro İstanbul A.Ş., “M5 Üsküdar-Samandıra Metro Hattı,” 2018. [Online]. Available: https://www.metro.istanbul/Hatlarimiz/HatDetay?hat=M5 [Accessed: Oct. 13, 2024].
  • [9] Hu, J. et al., “The research of DC traction power supply system and the DDL protection algorithm based on MATLAB/Simulink,” in CICED 2010 Proceedings vol. 12, Nanjing, China, 2010, pp. 1-6
  • [10] Railway Applications – Supply Voltages of Traction Systems, EN 50163, European Committee for Standardization (CEN), 2004.
  • [11] C. R. Avery, "Power electronics reliability in rail traction," in IEE Colloquium on Power Electronics Reliability - Promise and Practice. Does it Deliver?, vol. 202, no. 6, pp. 1-7, May 1998.
  • [12] S. Sagareli, "Traction power systems reliability concepts," in ASME/IEEE Joint Rail Conference, Proceedings of the 2004, Baltimore, USA, 2004, pp. 35-39
  • [13] Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS), EN 50126, European Committee for Standardization (CEN), 2017.
  • [14] Jun-Min Cha and Bun-Hui Ku, “Reliability Assessment of Railway Power System by using Tree Architecture,” KIEE, vol. 59, no.9, p.9-15, Jan 2010.
  • [15] R. Billinton and R. N. Allan, “Reliability Evaluation of Power Systems”, Plenum Press, vol. 16, no. 7, pp. 322-354, Feb 1996.
  • [16] Sang-Log Kwak, Jong-Bae Wang, Bong-Seob Lee and Chan-Woo Park, “Construction of Event Tree &Fault Tree for Train Fire Risk Assessment”, JKSR Vol. 11, P.530-535, Dec 2008.
  • [17] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,” Comput. Sci. Rev.,vols. 15–16, pp. 29–62, Feb. 2015.
  • [18] P. P. D. Meyer, “The Reliability of the Electric Transmission Infrastructure in the 21st Century,” IEEE, vol. 28, pp. 1-10, Nov. 2006

Metro Hattı Cer Gücü Elektrifikasyonunun Güvenilirlik ve Hata Ağacı Analizi

Year 2025, Issue: 21, 72 - 82, 31.01.2025
https://doi.org/10.47072/demiryolu.1583509

Abstract

Demiryolu sisteminin en önemli bileşenlerinden biri, tren hareketi için gerekli enerjiyi sağlamaktan sorumlu olan cer gücü sistemidir. DC cer güç kaynağı sisteminin güvenli ve güvenilir bir şekilde çalışması, tüm kentsel demiryolu ulaşım sisteminin temelini oluşturur. DC cer güç kaynağı sistemi arıza analizi, koruması ve güç sistemi güvenilirlik değerlendirmesi hakkında araştırma yapmak çok önemlidir. Raylı sistemlerin sürekliliği, güç tedarikinin performansından önemli ölçüde etkilenmektedir. Demiryolu cer gücü elektrifikasyon sisteminin gelişmesiyle ve raylı sistemler yolcu sayısının artmasıyla birlikte RAMS kavramı, Güvenilirlik (R), Kullanılabilirlik (A), Bakım yapılabilirlik (M) ve Emniyet (S) önemi artmıştır. Bundan dolayı, cer gücü elektrifikasyon sisteminin yüksek güvenilirliğini analiz etmek ve iyileştirme çalışmalarının yapılması gerekmektedir. Bu makalede, Metro İstanbul A.Ş. cer gücü sistemi güvenilirliği ile ilgili endeks sunulmaktadır ve Hata Ağacı Analizi (FTA) yaklaşımını kullanarak güvenilirliği değerlendirilmiştir. Ayrıca, bu makale sistem güvenilirliğini artırmanın ve cer gücü elektrifikasyonunun güvenilirlik endeksini artırmak için öneriler sunmaktadır.

Supporting Institution

Metro İstanbul A.Ş.

Thanks

Bu makalenin hazırlanmasına izin ve destek veren Metro İstanbul A.Ş. yetkililerine teşekkür ederiz.

References

  • [1] S.K. Chen, T.K. Ho ve B.H. Mao, "Reliability evaluations of railway power supplies by fault tree analysis" IET Electric Power Applications, vol 1, pp. 161–172, April 2007.
  • [2] B.H. Ku and J.M. Cha, "Reliability assessment of electric railway substation by using minimal cut sets algorithm," Journal of International Council on Electrical Engineering, vol. 1, no. 2, pp. 135-139, April 2011
  • [3] D. Feng, S. Lin, Q. Yang, X. Lin, Z. He, and W. Li, “Reliability evaluation for traction power supply system of high-speed railway considering relay protection,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 285–298, Mar. 2019
  • [4] H. Hayashiya, M. Masuda, Y. Noda, K. Suzuki, and T. Suzuki, “Reliability analysis of DC traction power supply system for electric railway,” in Proc. 19th Eur. Conf. Power Electron. Appl. (EPE, ECCE Europe), Sep. 2017, pp. 1–6.
  • [5] P. P.D. Meyer, The Reliability of the Electric Transmission Infrastructure in the 21st Century. Piscataway, NJ, USA: IEEE, 2006, p. 1.
  • [6] E. Zio, “Reliability engineering: Old problems and new challenges,” Rel. Eng. Syst. Saf., vol. 94, no. 2, pp. 125–141, Feb. 2009.
  • [7] T. Ölmez, “Energy distribution modelling in railway systems” M.Sc. thesis, Marmara University, Dept. Elect. and Elec. Eng., İstanbul, 2020
  • [8] Metro İstanbul A.Ş., “M5 Üsküdar-Samandıra Metro Hattı,” 2018. [Online]. Available: https://www.metro.istanbul/Hatlarimiz/HatDetay?hat=M5 [Accessed: Oct. 13, 2024].
  • [9] Hu, J. et al., “The research of DC traction power supply system and the DDL protection algorithm based on MATLAB/Simulink,” in CICED 2010 Proceedings vol. 12, Nanjing, China, 2010, pp. 1-6
  • [10] Railway Applications – Supply Voltages of Traction Systems, EN 50163, European Committee for Standardization (CEN), 2004.
  • [11] C. R. Avery, "Power electronics reliability in rail traction," in IEE Colloquium on Power Electronics Reliability - Promise and Practice. Does it Deliver?, vol. 202, no. 6, pp. 1-7, May 1998.
  • [12] S. Sagareli, "Traction power systems reliability concepts," in ASME/IEEE Joint Rail Conference, Proceedings of the 2004, Baltimore, USA, 2004, pp. 35-39
  • [13] Railway Applications – The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS), EN 50126, European Committee for Standardization (CEN), 2017.
  • [14] Jun-Min Cha and Bun-Hui Ku, “Reliability Assessment of Railway Power System by using Tree Architecture,” KIEE, vol. 59, no.9, p.9-15, Jan 2010.
  • [15] R. Billinton and R. N. Allan, “Reliability Evaluation of Power Systems”, Plenum Press, vol. 16, no. 7, pp. 322-354, Feb 1996.
  • [16] Sang-Log Kwak, Jong-Bae Wang, Bong-Seob Lee and Chan-Woo Park, “Construction of Event Tree &Fault Tree for Train Fire Risk Assessment”, JKSR Vol. 11, P.530-535, Dec 2008.
  • [17] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,” Comput. Sci. Rev.,vols. 15–16, pp. 29–62, Feb. 2015.
  • [18] P. P. D. Meyer, “The Reliability of the Electric Transmission Infrastructure in the 21st Century,” IEEE, vol. 28, pp. 1-10, Nov. 2006
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Article
Authors

Turan Ölmez 0000-0002-7200-5877

Büşra Ölmez 0009-0007-0910-6863

Publication Date January 31, 2025
Submission Date November 12, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2025 Issue: 21

Cite

IEEE T. Ölmez and B. Ölmez, “Metro Hattı Cer Gücü Elektrifikasyonunun Güvenilirlik ve Hata Ağacı Analizi”, Demiryolu Mühendisliği, no. 21, pp. 72–82, January 2025, doi: 10.47072/demiryolu.1583509.