Research Article
BibTex RIS Cite

Organik-inorganik hibrit nano çiçeklerin çemen (Trigonella foenum-graecum L.) tohum ekstresi kullanılarak sentezi ve anti-mikrobiyal özelliklerinin araştırılması

Year 2019, Volume: 36 Issue: 2, 159 - 167, 10.12.2019
https://doi.org/10.16882/derim.2019.549151

Abstract



Bu çalışmada organik-inorganik hibrit nano çiçek
sentezi için organik bileşen olarak çemen (Trigonella
foenum-graecum
L.) otu tohum
ekstresi ve inorganik bileşen olarak Cu2+ iyonları kullanılarak
yeşil bir üretim metodu raporlanmıştır. Çemen tohum ekstresi kullanılarak
sentezlenmiş organik-inorganik hibrit nano çiçekler (TF-Cu2+ hNF);
 taramalı elektron mikroskobu (SEM), Enerji Dağılımlı Spektrometre (EDX),
X-ışını kırınımı (XRD) ve Kızılötesi spektroskopisi (FT-IR) yöntemleri
kullanılarak karakterize edilmiştir. TF-Cu2+ hNF’lerin elektron
mikroskop görüntüsünde morfolojisi oldukça düzgün dağılımlı ve küresel formda
olmak üzere yaklaşık 18
μm boyutunda
gözlenmiştir. TF-Cu2+
hNF’ler;
Pseudomonas aeruginosa and Haemophilus influenza
dışında Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus,
Bacillus cereus, Salmonella typhi ve Escherichia coli türlerine
karşı 1-10 µg ml-1 aralığında ve kullanılan antibiyotikler
ile karşılaştırıldığında yüksek düzeyde
anti-mikrobiyal özellik göstermiştir.
Ancak hem TF-Cu2+ hNF’ler hemde serbest TF ekstresi, Candida
albicans
ve Candida glabrata türlerine karşı antifungal aktivite
göstermemiştir. Yapılan bu çalışma
çemen ekstresi içeren organik-inorganik hibrit nano çiçeklerin test edilen
patojen suşlar ile gelişen mikrobiyal enfeksiyonlar için terapötik bir ajan
olarak kullanılabileceğini ve ilaç direncinin üstesinden gelme potansiyeline
sahip olduğunu ortaya koymaktadır.



References

  • Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016a). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84:402-409.
  • Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016b). A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93-94:105-112.
  • Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1):17–28.
  • Aman, S., Naim, A., Siddiqi, R., & Naz, S. (2014). Antimicrobial polyphenols from small tropical fruits, tea and spice oilseeds. Food Science and Technology International, 20(4):241-51.
  • Amin, A., Alkaabi, A., Al-Falasi, S., & Daoud, S.A. (2005). Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biology International, 29:687-694.
  • Ariza-Avidad, M., Salinas-Castillo, A., & Capitán-Vallvey, L.F. (2016). A 3D mPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosensors and Bioelectronics, 77:51–55.
  • Baldemir, A., Kose, N.B., Ildız, N., İlgün, S., Yusufbeyoğlu, S., Yılmaz, V., & Ocsoy, I. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances, 7:44303-44308.
  • Banerjee, M.,Sharma, S.,Chattopadhyay, A., & Ghosh, SS. (2011). Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale, 3(11):5120-5125.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 72:248–254.
  • CLSI (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2009). Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline- second ed. CLSI document M44- A2. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2012). Performance standards for antimicrobial susceptibility testing. Twenty-second informational supplement ed. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, USA.
  • El-Kamali, H.H., & El-Karim. E.M.A. (2009). Evaluation of antibacterial activity of some medicinal plants used in Sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences, 2(4):246-251.
  • Feyzi, S., Varidi, M., Zare, F., & Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties, Journal of the Science of Food and Agriculture, 95(15):3165-3176.
  • Ge, J., Lei, J., & Zare, R.N. (2012). Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 7:428-432.
  • Goyal, S., Gupta, N., Kumar, A., Chatterjee, S., & Nimesh, S. (2018). Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET nanobiotechnology, 12(4):526-533.
  • Huang, Y., Ran, X., Lin, Y., Ren, J., & Qu, X. (2015). Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chemistry Communication, 51(21):4386-4389.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I., (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102:60-66.
  • Karatoprak, G.Ş., Aydin, G., Altinsoy, B., Altinkaynak, C., Koşar, M., & Ocsoy, I. (2017). The effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme and Microbial Technology, 97:21-26.
  • Kruk, T., Szczepanowicz, K., Stefanska, J., Socha, R.P., & Warszynski, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and surfaces B: Biointerfaces, 128:17-22.
  • Lee, S. W., Cheon, S.A., Kim, M.I., & Park, T.J. (2015). Organic-inorganic hybrid nanoflowers:types, characterictics, and future prospects. Journal of Nanobiotechnology, 13:54.
  • Liang, L., Fei, X., Li, Y., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Advances, 5(117):96997-97002.
  • Mittal, AK.,Chisti, Y., & Banerjee, UC. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2):346-356.
  • Moradi Kor, N., Bagher Didarshetaban, M., & Saeid Pour, H.R. (2013). Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant. International journal of Advanced Biological and Biomedical Research, 1(8):922-931.
  • Nadagouda, M.N., Iyanna, N., Lalley, J., Han, C., Dionysiou, DD., & Varma, R.S. (2014). Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering, 2(7):1717–1723.
  • NCCLS (2000). Approved Standard: M7-A5. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th Ed., National Committee for Clinical Laboratory Standards, Wayne, USA.
  • Olli, S., & Kirti, P.B. (2006). Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L., Journal of Biochemistry and Molecular Biology, 39(3):278-283.
  • Patel, D.K., & Dhanabal, S.P. (2013). Development and optimization of bioanalytical parameters for the standardization of Trigonella foenum-graecum, Journal of Acute Disease, 2(2):137-139.
  • Phull, A.R, Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M., & Haq, I. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1):31-36.
  • Singh, P., Vishwakarma, S.P., & Singh, R.L. (2014). Antioxidant, oxidative DNA damage protective and antimicrobial activities of the plant Trigonella foenum‐graecum. Journal of the Science of Food and Agriculture, 94(12):2497-2504.
  • Somturk, B., Hancer, M., Ocsoy, I., & Özdemir, N. (2015). Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44:13845-13852.
  • Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Ozdemir, N., & Ocsoy, I. (2016). Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme and Microbial Technology, 86:134-142.
  • Subhapriya, S. & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116:215-220.
  • Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale, 6:255-262.
  • Thawari, A.G., & Rao, C.P. (2016) Peroxidase-like catalytic activity of copper-mediated protein–inorganic hybrid nanoflowers and nanofibers of β-lactoglobulin and α-lactalbumin: synthesis, spectral characterization, microscopic features, and catalytic activity. ACS Applied Material & Interfaces, 8(16):10392–10402.
  • Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R, S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Advances, 4:33998-34002.
  • Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., & Cai, Z. (2015). An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Jorunal of Materials Chemistry B, 3:2295-2300.
  • Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces B Biointerfaces, 130:299-304.
  • Zhang, B., Li, P., Zhang, H., Li, X., Tian, L., Wang, H., Chen, X., Ali, N., Ali, Z., & Zhang, Q. (2016). Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 366:328–338.

Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity

Year 2019, Volume: 36 Issue: 2, 159 - 167, 10.12.2019
https://doi.org/10.16882/derim.2019.549151

Abstract



Herein
we report a green method for the synthesis of organic-inorganic hybrid
nanoflowers using a Trigonella
foenum-graecum
L. (TF) (Fenugreek seeds) extracts as an organic part and
copper ions acting as an inorganic part. The organic-inorganic hybrid
nanoflowers using TF seed extract (TF-Cu2+ hNFs) were characterized
by SEM, XRD, EDX and FTIR. The morphology of the TF-Cu2+ hNFs was
quite spherical and monodisperse with
18μm size. The TF-Cu2+
hNF exhibited the effective anti-bacterial activity against Enterococcus
faecium, Enterococcus faecalis, Staphylococcus aureus,
Bacillus cereus,
Salmonella typhi
and Escherichia coli at 1-10 µg ml-1
concentrations except against Pseudomonas aeruginosa and Haemophilus
influenza
. However, both TF-Cu2+ hNFs and free TF extracts
showed any antifungal activities against Candida albicans or Candida
glabrata
. The study revealed that TF-Cu2+ hNFs could be used as
a therapeutic agent for microbial infections and has the potential to overcome
drug resistance.



References

  • Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016a). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84:402-409.
  • Altinkaynak, C., Tavlasoglu, S., Özdemir, N., & Ocsoy, I. (2016b). A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93-94:105-112.
  • Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1):17–28.
  • Aman, S., Naim, A., Siddiqi, R., & Naz, S. (2014). Antimicrobial polyphenols from small tropical fruits, tea and spice oilseeds. Food Science and Technology International, 20(4):241-51.
  • Amin, A., Alkaabi, A., Al-Falasi, S., & Daoud, S.A. (2005). Chemopreventive activities of Trigonella foenum graecum (Fenugreek) against breast cancer. Cell Biology International, 29:687-694.
  • Ariza-Avidad, M., Salinas-Castillo, A., & Capitán-Vallvey, L.F. (2016). A 3D mPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosensors and Bioelectronics, 77:51–55.
  • Baldemir, A., Kose, N.B., Ildız, N., İlgün, S., Yusufbeyoğlu, S., Yılmaz, V., & Ocsoy, I. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Advances, 7:44303-44308.
  • Banerjee, M.,Sharma, S.,Chattopadhyay, A., & Ghosh, SS. (2011). Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale, 3(11):5120-5125.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 72:248–254.
  • CLSI (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2009). Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline- second ed. CLSI document M44- A2. Clinical and Laboratory Standards Institute, Wayne, USA.
  • CLSI (2012). Performance standards for antimicrobial susceptibility testing. Twenty-second informational supplement ed. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, USA.
  • El-Kamali, H.H., & El-Karim. E.M.A. (2009). Evaluation of antibacterial activity of some medicinal plants used in Sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences, 2(4):246-251.
  • Feyzi, S., Varidi, M., Zare, F., & Varidi, M.J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties, Journal of the Science of Food and Agriculture, 95(15):3165-3176.
  • Ge, J., Lei, J., & Zare, R.N. (2012). Protein–inorganic hybrid nanoflowers, Nature Nanotechnology, 7:428-432.
  • Goyal, S., Gupta, N., Kumar, A., Chatterjee, S., & Nimesh, S. (2018). Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET nanobiotechnology, 12(4):526-533.
  • Huang, Y., Ran, X., Lin, Y., Ren, J., & Qu, X. (2015). Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chemistry Communication, 51(21):4386-4389.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I., (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102:60-66.
  • Karatoprak, G.Ş., Aydin, G., Altinsoy, B., Altinkaynak, C., Koşar, M., & Ocsoy, I. (2017). The effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme and Microbial Technology, 97:21-26.
  • Kruk, T., Szczepanowicz, K., Stefanska, J., Socha, R.P., & Warszynski, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and surfaces B: Biointerfaces, 128:17-22.
  • Lee, S. W., Cheon, S.A., Kim, M.I., & Park, T.J. (2015). Organic-inorganic hybrid nanoflowers:types, characterictics, and future prospects. Journal of Nanobiotechnology, 13:54.
  • Liang, L., Fei, X., Li, Y., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Advances, 5(117):96997-97002.
  • Mittal, AK.,Chisti, Y., & Banerjee, UC. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2):346-356.
  • Moradi Kor, N., Bagher Didarshetaban, M., & Saeid Pour, H.R. (2013). Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant. International journal of Advanced Biological and Biomedical Research, 1(8):922-931.
  • Nadagouda, M.N., Iyanna, N., Lalley, J., Han, C., Dionysiou, DD., & Varma, R.S. (2014). Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering, 2(7):1717–1723.
  • NCCLS (2000). Approved Standard: M7-A5. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th Ed., National Committee for Clinical Laboratory Standards, Wayne, USA.
  • Olli, S., & Kirti, P.B. (2006). Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L., Journal of Biochemistry and Molecular Biology, 39(3):278-283.
  • Patel, D.K., & Dhanabal, S.P. (2013). Development and optimization of bioanalytical parameters for the standardization of Trigonella foenum-graecum, Journal of Acute Disease, 2(2):137-139.
  • Phull, A.R, Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M., & Haq, I. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1):31-36.
  • Singh, P., Vishwakarma, S.P., & Singh, R.L. (2014). Antioxidant, oxidative DNA damage protective and antimicrobial activities of the plant Trigonella foenum‐graecum. Journal of the Science of Food and Agriculture, 94(12):2497-2504.
  • Somturk, B., Hancer, M., Ocsoy, I., & Özdemir, N. (2015). Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 44:13845-13852.
  • Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Ozdemir, N., & Ocsoy, I. (2016). Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme and Microbial Technology, 86:134-142.
  • Subhapriya, S. & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116:215-220.
  • Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., & Niu, Z. (2014). Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale, 6:255-262.
  • Thawari, A.G., & Rao, C.P. (2016) Peroxidase-like catalytic activity of copper-mediated protein–inorganic hybrid nanoflowers and nanofibers of β-lactoglobulin and α-lactalbumin: synthesis, spectral characterization, microscopic features, and catalytic activity. ACS Applied Material & Interfaces, 8(16):10392–10402.
  • Wu, Z., Li, X., Li, F., Yue, H., He, C., Xie, F., & Wang, Z. (2014). Enantioselective transesterification of (R, S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Advances, 4:33998-34002.
  • Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z., & Cai, Z. (2015). An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Jorunal of Materials Chemistry B, 3:2295-2300.
  • Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces B Biointerfaces, 130:299-304.
  • Zhang, B., Li, P., Zhang, H., Li, X., Tian, L., Wang, H., Chen, X., Ali, N., Ali, Z., & Zhang, Q. (2016). Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 366:328–338.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Cevahir Altınkaynak 0000-0003-0082-8521

Nilay Ildız This is me 0000-0002-3799-856X

Ayşe Baldemir 0000-0003-2473-4837

Nalan Özdemir 0000-0002-8930-5198

Vedat Yılmaz This is me 0000-0002-1719-1638

İsmail Öçsoy 0000-0002-5991-3934

Publication Date December 10, 2019
Published in Issue Year 2019 Volume: 36 Issue: 2

Cite

APA Altınkaynak, C., Ildız, N., Baldemir, A., Özdemir, N., et al. (2019). Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim, 36(2), 159-167. https://doi.org/10.16882/derim.2019.549151
AMA Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. DERİM. December 2019;36(2):159-167. doi:10.16882/derim.2019.549151
Chicago Altınkaynak, Cevahir, Nilay Ildız, Ayşe Baldemir, Nalan Özdemir, Vedat Yılmaz, and İsmail Öçsoy. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim 36, no. 2 (December 2019): 159-67. https://doi.org/10.16882/derim.2019.549151.
EndNote Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ (December 1, 2019) Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim 36 2 159–167.
IEEE C. Altınkaynak, N. Ildız, A. Baldemir, N. Özdemir, V. Yılmaz, and İ. Öçsoy, “Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity”, DERİM, vol. 36, no. 2, pp. 159–167, 2019, doi: 10.16882/derim.2019.549151.
ISNAD Altınkaynak, Cevahir et al. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim 36/2 (December 2019), 159-167. https://doi.org/10.16882/derim.2019.549151.
JAMA Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. DERİM. 2019;36:159–167.
MLA Altınkaynak, Cevahir et al. “Synthesis of Organic-Inorganic Hybrid Nanoflowers Using Trigonella Foenum-Graecum Seed Extract and Investigation of Their Anti-Microbial Activity”. Derim, vol. 36, no. 2, 2019, pp. 159-67, doi:10.16882/derim.2019.549151.
Vancouver Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. DERİM. 2019;36(2):159-67.

Cited By


























DERİM in

 

CAB INTERNATIONAL                                                                                                   CABI International ile ilgili görsel sonucu

FAO AGRIS                                                                                                                                   FAO AGRIS ile ilgili görsel sonucu

INDEX COPERNICUS                                                                                                       INDEX COPERNICUS ile ilgili görsel sonucu

OpenAIRE                                                                                                                                      OpenAIRE ile ilgili görsel sonucu

GOOGLE SCHOLAR                                                                                                           GOOGLE SCHOLAR ile ilgili görsel sonucu


FSTA                                                                                       16423

DRJI                                                                                      16424

                                                    

ISSN : 1300-3496

e-ISSN : 2149-2182

Creative Commons Lisansı
Derim Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.

------------------------------------------------------------------

DERİM

Batı Akdeniz Tarımsal Araştırma Enstitüsü

Demircikara Mh. Paşa Kavakları Cad. No:11, P.K.35 Antalya

derim@derim.com.tr

www.derim.com.tr