Research Article
BibTex RIS Cite

THE RELATIONSHIP BETWEEN SHIP BRIDGE AUTOMATION SYSTEMS AND THE LEVEL OF SITUATIONAL AWARENESS OF MARINE PILOTS AND SHIP MASTERS

Year 2016, Volume: 8 Issue: 2, 0 - 0, 20.12.2016

Abstract



The maritime
industry is seeking for support from new technologies for managing ships, intended
for reduction and compensation of human factor in marine accidents. Marine
accident investigations have indicated that the accidents are frequently
originated from the ships’ bridge operations. Today, efforts to prevent
accidents continue by increasing the situational awareness of the bridge team
with automation and integrated bridge systems. In this study, bridge
technologies and automation were investigated considering their effects on
situational awareness of ship masters and marine pilots who play a key role in
the bridge team. In depth interview and focus group techniques of qualitative
research were used to investigate the matter. Ship masters and marine pilots
were selected as the target group. This study has allowed the evaluation of
strengths and weaknesses of bridge technologies. Research data have revealed the
relationships with new technologies, the perceptions, the similar and different
approaches of ship masters and marine pilots. In this study, the investigation
of the automation and bridge technologies from the point of ship masters and
marine pilots is thought to contribute to filling the gap in the literature
about this topic.




References

  • Akhtar, M.J. ve Utne, I.B. (2014). Human fatigue’s effect on the risk of maritime groundings – a Bayesian network modeling approach. Safety Science, 62, 427-440.
  • Alexander, L. ve Casey, M.J. (2008). Use of portable piloting units by maritime pilots. In: Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference 2008.
  • Bal, E., Arslan, O. ve Tavacıoğlu, L. (2015). Prioritization of the causal factors of fatigue in seafarers and measurement of fatigue with the application of the lactate test. Safety Science, 72, 46-54.
  • Bashiri, B. ve Mann, D.D. (2014). Automation and the situation awareness of drivers in agricultural semi-autonomous vehicles. Biosystems Engineering, 124, 8-15.
  • Belev, B.C. (2004). Information capabilities of integrated bridge systems. Journal of Navigation, 57(1), 145-151.
  • Bole, A., Wall, A. ve Norris, A. (2014). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users. Waltham: Butterworth and Heinemann.
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P. ve Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis and Prevention, 59, 26-37.
  • Chen, C.H., Khoo, L.P., Chong, Y.T. ve Yin, X.F. (2014). Knowledge discovery using genetic algorithm for maritime situational awareness. Expert Systems with Applications, 41(6), 2742-2753.
  • Desai, N. (2015). Dynamic positioning: Method for disaster prevention and risk management. Procedia Earth and Planetary Science, 11, 216-223.
  • Endsley, M.R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.
  • Endsley, M.R. (1996). Automation and situation awareness. Automation and Human Performance: Theory and Applications, 163-181.
  • Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. Chichester: Wiley.
  • Franke U. ve Brynielsson, J. (2014). Cyber situational awareness – a systematic review of the literature. Computers & Security, 46, 18-31.
  • Graafland, M., Schraagen, J.M.C., Boermeester, M.A., Bemelman, W.A. ve Schijven, M. P. (2015). Training situational awareness to reduce surgical errors in the operating room. The British Journal of Surgery, 102(1), 16-23.
  • Graziano, A., Teixeira, A.P. ve Soares, C.G. (2016). Classification of human errors in grounding and collision accidents using the TRACEr Taxonomy, Safety Science, 86, 245-257.
  • Grech, M.R., Horberry, T. ve Smith, A. (2002). Human error in maritime operations: Analyses of accident report using the leximancer tool. In: Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, 46(19), 1718-1721.
  • Gug, S.G. ve Jong, J.Y. (2003). A study on the analysis system of voyage data recorder. International Journal of Navigation and Port Research, 27(6), 605-610.
  • Hoff, K.A. ve Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(3), 407-434.
  • IMO (2002). International Convention for the Safety of Life at Sea (SOLAS) - Including Amendments January and July 2002, London.
  • İbrahim, O.S. (2009). To patrol is to control: Ensuring situational awareness in Africa's maritime exclusive economic zones. African Security Review, 18(3), 124-131.
  • Kaber, D.B. ve Endsley, M.R. (2004). The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theoretical Issues in Ergonomics Science, 5(2), 113-153.
  • Kilingaru, K., Tweedale, J.W., Thatcher, S. ve Jain, L.C. (2013). Monitoring pilot “Situation Awareness”. Journal of Intelligent & Fuzzy Systems, 24(3), 457-466.
  • Last, P., Bahlke, C., Bertram, M.H. ve Linsen, L. (2014). Comprehensive analysis of automatic identification system (AIS) data in regard to vessel movement prediction. The Journal of Navigation, 67(5), 791-809.
  • Laursen T., Mortensen, H.P., Pedersen N.B., Rasmussen, U.W., Madsen, T.K. ve Nielsen, J.D. (2010). Performance modelling of automatic identification system with extended field of view. Lecture Notes in Computer Science, 6294, 242-255.
  • Lee, J.D. ve See, K.A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50-80.
  • Li, N., Yang, Z., Ghahramani, A., Becerik-Gerber, B. ve Soibelman, L. (2014). Situational awareness for supporting building fire emergency response: Information needs, information sources, and implementation requirements. Fire Safety Journal, 63, 17-28.
  • Lin, B. ve Huang, C.H. (2006). Comparison between ARPA radar and AIS characteristics for vessel traffic services. Journal of Marine Science and Technology, 14(3), 182-189.
  • Liyun, W., Jianmei, X. ve Xihuai, W. (2013). Ship dynamic positioning systems based on fuzzy predictive control. Telkomnika Indonesian Journal of Electrical Engineering, 11(11), 6769-6779.
  • Ma, F., Wu, Q., Yan, X., Chu, X. ve Zhang, D. (2015). Classification of automatic radar plotting aid targets based on improved fuzzy c-means. Transportation Research, 51, 180-195.
  • Mokhtari, A.H., Wall, A., Brooks, P. ve Wang, J. (2007). Automatic identification system (AIS): Data reliability and human error implications. The Journal of Navigation, 60(3), 373-389.
  • Muhammad, S. ve Cerezo, A.D. (2010). Passivity-based control applied to the dynamic positioning of ships. IET Control Theory and Applications, 6(5), 680-688.
  • National Transportation Safety Board (1997). Marine Accident Report; Grounding of the Panamanian Passenger Ship Royal Majesty on Rose and Crown Shoal Near Nantucket/Massachusetts June 10, 1995, Washington, DC: Notation 6598A, 20594.
  • Ngongi, W.E., Du, J. ve Wang, R. (2015). Robust fuzzy controller design for dynamic positioning system of ships. International Journal of Control, Automation and Systems, 13(5), 1-12.
  • Nilsson, R., Gärling, T. ve Lützhöft, M. (2009). An experimental simulation study of advanced decision support system for ship navigation. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 188-197.
  • Nof, S.Y. (2009). Springer Handbook of Automation. Berlin: Springer Science & Business Media.
  • Nuutilainen, P. (1997). The effects of automation on situation awareness in an air traffic control simulation, Master’s Thesis, The University of Guelph, The Faculty of Graduate Studies, Guelph.
  • Overgard, K.I., Sorensen, L.J., Nazir, S. Ve Martinsen, T.J. (2015). Critical incidents during dynamic positioning: Operator’s situation awareness and decision-making in maritime operations. Theoretical Issues in Ergonomics Science, 16(4), 366-387.
  • Panteli, M. ve Kirschen, D.S. (2015). Situation awareness in power systems: Theory, challenges and applications. Electric Power Systems Research, 122, 140-151.
  • Parasuraman, R. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230-253.
  • Patton, M.Q. (1987). How To Use Qualitative Methods in Evaluation. Newbury: Sage.
  • Patton, M.Q. (2002). Qualitative Research & Evaluation Methods. London: Sage Publications.
  • Piccinelli, M. ve Gubian, P. (2013). Modern ships voyage data recorders: a forensics perspective on the Costa Concordia shipwreck. Digital Investigation, 10, 41-49.
  • Popescu, C. ve Varsami, A. (2010). The use of ECDIS in modern navigation. Constanta Maritime University Annals, 13(1), 41-44.
  • Sandhaland, H., Oltedal, H. ve Eid, J. (2015). Situation awareness in bridge operations – A study of collisions between attendant vessels and offshore facilities in the North Sea. Safety Science, 79, 277-285.
  • Sethumadhavan, A. (2009). Effects of automation types on air traffic controller situation awareness and performance. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53(1), 1-5.
  • Sethumadhavan, A. (2011). Effects of first automation failure on situation awareness and performance in an air traffic control task. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 55(1), 350-354.
  • Smierzchalski, R. (2012). Automation of ship and control. Scientific Journals of the Maritime University of Szczecin, 30(102), 132-137.
  • Smith, A.G. (2012). Level of automation effects on situation awareness and functional specificity in automation reliance, Master’s Thesis, University of Toronto Department of Mechanical and Industrial Engineering, Toronto.
  • Stanton, N.A., Chambers, P.R.G. ve Piggott J. (2001). Situational awareness and safety. Safety Science, 39(3), 189-204.
  • Stewart, C.J. ve Cash, W.B. (1985). Interviewing: Principles and Practices. Dubuque: Brown Pub.
  • Tetley, L. ve Calcutt, D. (2001). Electronic Navigation Systems. Waltham: Butterworth and Heinemann.
  • Towns, B. (2007). Situational awareness in the marine towing industry, Master’s Thesis, Rochester Institute of Technology, Department of Civil Engineering Technology Environmental Management & Safety, New York.
  • Turan, O., Helvacioglu, I.H., Insel, M., Khalid, H. ve Kurt, R.E. (2011). Crew noise exposure on board ships and comparative study of applicable standards. Ships and Offshore Structures, 6(4), 323-338.
  • Westrenen, F.V. ve Praetorius, G. (2014). Situation awareness and maritime traffic: Having awareness or being in control? Theoretical Issues in Ergonomics Science, 15(2), 161-180.
  • Wiersma, E. ve Butter, R. (2002). Situation Awareness in Maritime Traffic Control: A Comparison of Two Methods, in D. de Waard, K.A. Brookhuis, J. Moraal, and A. Toffetti (Eds.), Human Factors in Transportation, Communication, Health, and the Workplace (p.377-386). Maastricht, the Netherlands: Shaker Publishing.
  • Xiao, F., Ligteringen, H., Gulijk, C.V. ve Ale, B. (2015). Comparison study on AIS data of ship traffic behavior. Ocean Engineering, 95(1), 84-93.
  • Xiaoxia, W. ve Chaohua, G. (2002). Electronic chart display and information system. Geo-spatial Information Science, 5(1), 7-11.
  • Xiaoxia, W., Chaohua, G. ve Huang, C. (2005). An electronic chart display and information system. Marine Geodesy, 28(2), 175-189.
  • Yang, Y., Chen, G. Ve JiaLu, D. (2014). Robust adaptive NN-based output feedback control for a dynamic positioning ship using DSC approach. Science China Information Sciences, 57(10), 1-13.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.

GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ

Year 2016, Volume: 8 Issue: 2, 0 - 0, 20.12.2016

Abstract

Denizcilik
endüstrisi, gemi yönetimi alanında deniz kazalarındaki insan unsurunun
azaltılması ve telafisine yönelik yeni teknolojilerden destek almaya
çalışmaktadır. Deniz kazaları araştırmaları, kazaların sıklıkla köprü üstü
kaynaklı olduğunu göstermiştir. Günümüzde otomasyon ve entegre köprü üstü
sistemleriyle köprü üstü takımının durumsal farkındalığını artırma yoluyla
kazaları önlemeye yönelik çalışmalar devam etmektedir. Bu çalışmada köprü üstü
teknolojileri ve otomasyon konuları, köprü üstü takımında kilit rol oynayan
kaptan ve kılavuz kaptanların durumsal farkındalıklarına etkileri yönünden
araştırılmıştır. Araştırmada nitel araştırma yöntemlerinden görüşme ve odak
grup çalışması teknikleri kullanılmıştır. Araştırmada hedef kitle olarak gemi
kaptanları ve kılavuz kaptanlar seçilmiştir. Bu çalışma, köprü üstü
teknolojilerinin güçlü ve zayıf yönlerinin değerlendirilmesine olanak
sağlamıştır. Araştırma verileri, kaptan ve kılavuz kaptanların yeni
teknolojilerle ilişkilerini, algılarını, benzer ve farklı yaklaşımlarını ortaya
çıkarmıştır. Bu araştırmada, otomasyon ve köprü üstü teknolojilerinin kaptan ve
kılavuz kaptanlar yönünden incelenmesi, bu konudaki literatür boşluğunun
giderilmesine katkıda bulunmaktadır.




References

  • Akhtar, M.J. ve Utne, I.B. (2014). Human fatigue’s effect on the risk of maritime groundings – a Bayesian network modeling approach. Safety Science, 62, 427-440.
  • Alexander, L. ve Casey, M.J. (2008). Use of portable piloting units by maritime pilots. In: Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference 2008.
  • Bal, E., Arslan, O. ve Tavacıoğlu, L. (2015). Prioritization of the causal factors of fatigue in seafarers and measurement of fatigue with the application of the lactate test. Safety Science, 72, 46-54.
  • Bashiri, B. ve Mann, D.D. (2014). Automation and the situation awareness of drivers in agricultural semi-autonomous vehicles. Biosystems Engineering, 124, 8-15.
  • Belev, B.C. (2004). Information capabilities of integrated bridge systems. Journal of Navigation, 57(1), 145-151.
  • Bole, A., Wall, A. ve Norris, A. (2014). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users. Waltham: Butterworth and Heinemann.
  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P. ve Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis and Prevention, 59, 26-37.
  • Chen, C.H., Khoo, L.P., Chong, Y.T. ve Yin, X.F. (2014). Knowledge discovery using genetic algorithm for maritime situational awareness. Expert Systems with Applications, 41(6), 2742-2753.
  • Desai, N. (2015). Dynamic positioning: Method for disaster prevention and risk management. Procedia Earth and Planetary Science, 11, 216-223.
  • Endsley, M.R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.
  • Endsley, M.R. (1996). Automation and situation awareness. Automation and Human Performance: Theory and Applications, 163-181.
  • Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. Chichester: Wiley.
  • Franke U. ve Brynielsson, J. (2014). Cyber situational awareness – a systematic review of the literature. Computers & Security, 46, 18-31.
  • Graafland, M., Schraagen, J.M.C., Boermeester, M.A., Bemelman, W.A. ve Schijven, M. P. (2015). Training situational awareness to reduce surgical errors in the operating room. The British Journal of Surgery, 102(1), 16-23.
  • Graziano, A., Teixeira, A.P. ve Soares, C.G. (2016). Classification of human errors in grounding and collision accidents using the TRACEr Taxonomy, Safety Science, 86, 245-257.
  • Grech, M.R., Horberry, T. ve Smith, A. (2002). Human error in maritime operations: Analyses of accident report using the leximancer tool. In: Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, 46(19), 1718-1721.
  • Gug, S.G. ve Jong, J.Y. (2003). A study on the analysis system of voyage data recorder. International Journal of Navigation and Port Research, 27(6), 605-610.
  • Hoff, K.A. ve Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(3), 407-434.
  • IMO (2002). International Convention for the Safety of Life at Sea (SOLAS) - Including Amendments January and July 2002, London.
  • İbrahim, O.S. (2009). To patrol is to control: Ensuring situational awareness in Africa's maritime exclusive economic zones. African Security Review, 18(3), 124-131.
  • Kaber, D.B. ve Endsley, M.R. (2004). The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theoretical Issues in Ergonomics Science, 5(2), 113-153.
  • Kilingaru, K., Tweedale, J.W., Thatcher, S. ve Jain, L.C. (2013). Monitoring pilot “Situation Awareness”. Journal of Intelligent & Fuzzy Systems, 24(3), 457-466.
  • Last, P., Bahlke, C., Bertram, M.H. ve Linsen, L. (2014). Comprehensive analysis of automatic identification system (AIS) data in regard to vessel movement prediction. The Journal of Navigation, 67(5), 791-809.
  • Laursen T., Mortensen, H.P., Pedersen N.B., Rasmussen, U.W., Madsen, T.K. ve Nielsen, J.D. (2010). Performance modelling of automatic identification system with extended field of view. Lecture Notes in Computer Science, 6294, 242-255.
  • Lee, J.D. ve See, K.A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50-80.
  • Li, N., Yang, Z., Ghahramani, A., Becerik-Gerber, B. ve Soibelman, L. (2014). Situational awareness for supporting building fire emergency response: Information needs, information sources, and implementation requirements. Fire Safety Journal, 63, 17-28.
  • Lin, B. ve Huang, C.H. (2006). Comparison between ARPA radar and AIS characteristics for vessel traffic services. Journal of Marine Science and Technology, 14(3), 182-189.
  • Liyun, W., Jianmei, X. ve Xihuai, W. (2013). Ship dynamic positioning systems based on fuzzy predictive control. Telkomnika Indonesian Journal of Electrical Engineering, 11(11), 6769-6779.
  • Ma, F., Wu, Q., Yan, X., Chu, X. ve Zhang, D. (2015). Classification of automatic radar plotting aid targets based on improved fuzzy c-means. Transportation Research, 51, 180-195.
  • Mokhtari, A.H., Wall, A., Brooks, P. ve Wang, J. (2007). Automatic identification system (AIS): Data reliability and human error implications. The Journal of Navigation, 60(3), 373-389.
  • Muhammad, S. ve Cerezo, A.D. (2010). Passivity-based control applied to the dynamic positioning of ships. IET Control Theory and Applications, 6(5), 680-688.
  • National Transportation Safety Board (1997). Marine Accident Report; Grounding of the Panamanian Passenger Ship Royal Majesty on Rose and Crown Shoal Near Nantucket/Massachusetts June 10, 1995, Washington, DC: Notation 6598A, 20594.
  • Ngongi, W.E., Du, J. ve Wang, R. (2015). Robust fuzzy controller design for dynamic positioning system of ships. International Journal of Control, Automation and Systems, 13(5), 1-12.
  • Nilsson, R., Gärling, T. ve Lützhöft, M. (2009). An experimental simulation study of advanced decision support system for ship navigation. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 188-197.
  • Nof, S.Y. (2009). Springer Handbook of Automation. Berlin: Springer Science & Business Media.
  • Nuutilainen, P. (1997). The effects of automation on situation awareness in an air traffic control simulation, Master’s Thesis, The University of Guelph, The Faculty of Graduate Studies, Guelph.
  • Overgard, K.I., Sorensen, L.J., Nazir, S. Ve Martinsen, T.J. (2015). Critical incidents during dynamic positioning: Operator’s situation awareness and decision-making in maritime operations. Theoretical Issues in Ergonomics Science, 16(4), 366-387.
  • Panteli, M. ve Kirschen, D.S. (2015). Situation awareness in power systems: Theory, challenges and applications. Electric Power Systems Research, 122, 140-151.
  • Parasuraman, R. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230-253.
  • Patton, M.Q. (1987). How To Use Qualitative Methods in Evaluation. Newbury: Sage.
  • Patton, M.Q. (2002). Qualitative Research & Evaluation Methods. London: Sage Publications.
  • Piccinelli, M. ve Gubian, P. (2013). Modern ships voyage data recorders: a forensics perspective on the Costa Concordia shipwreck. Digital Investigation, 10, 41-49.
  • Popescu, C. ve Varsami, A. (2010). The use of ECDIS in modern navigation. Constanta Maritime University Annals, 13(1), 41-44.
  • Sandhaland, H., Oltedal, H. ve Eid, J. (2015). Situation awareness in bridge operations – A study of collisions between attendant vessels and offshore facilities in the North Sea. Safety Science, 79, 277-285.
  • Sethumadhavan, A. (2009). Effects of automation types on air traffic controller situation awareness and performance. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53(1), 1-5.
  • Sethumadhavan, A. (2011). Effects of first automation failure on situation awareness and performance in an air traffic control task. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 55(1), 350-354.
  • Smierzchalski, R. (2012). Automation of ship and control. Scientific Journals of the Maritime University of Szczecin, 30(102), 132-137.
  • Smith, A.G. (2012). Level of automation effects on situation awareness and functional specificity in automation reliance, Master’s Thesis, University of Toronto Department of Mechanical and Industrial Engineering, Toronto.
  • Stanton, N.A., Chambers, P.R.G. ve Piggott J. (2001). Situational awareness and safety. Safety Science, 39(3), 189-204.
  • Stewart, C.J. ve Cash, W.B. (1985). Interviewing: Principles and Practices. Dubuque: Brown Pub.
  • Tetley, L. ve Calcutt, D. (2001). Electronic Navigation Systems. Waltham: Butterworth and Heinemann.
  • Towns, B. (2007). Situational awareness in the marine towing industry, Master’s Thesis, Rochester Institute of Technology, Department of Civil Engineering Technology Environmental Management & Safety, New York.
  • Turan, O., Helvacioglu, I.H., Insel, M., Khalid, H. ve Kurt, R.E. (2011). Crew noise exposure on board ships and comparative study of applicable standards. Ships and Offshore Structures, 6(4), 323-338.
  • Westrenen, F.V. ve Praetorius, G. (2014). Situation awareness and maritime traffic: Having awareness or being in control? Theoretical Issues in Ergonomics Science, 15(2), 161-180.
  • Wiersma, E. ve Butter, R. (2002). Situation Awareness in Maritime Traffic Control: A Comparison of Two Methods, in D. de Waard, K.A. Brookhuis, J. Moraal, and A. Toffetti (Eds.), Human Factors in Transportation, Communication, Health, and the Workplace (p.377-386). Maastricht, the Netherlands: Shaker Publishing.
  • Xiao, F., Ligteringen, H., Gulijk, C.V. ve Ale, B. (2015). Comparison study on AIS data of ship traffic behavior. Ocean Engineering, 95(1), 84-93.
  • Xiaoxia, W. ve Chaohua, G. (2002). Electronic chart display and information system. Geo-spatial Information Science, 5(1), 7-11.
  • Xiaoxia, W., Chaohua, G. ve Huang, C. (2005). An electronic chart display and information system. Marine Geodesy, 28(2), 175-189.
  • Yang, Y., Chen, G. Ve JiaLu, D. (2014). Robust adaptive NN-based output feedback control for a dynamic positioning ship using DSC approach. Science China Information Sciences, 57(10), 1-13.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.
There are 60 citations in total.

Details

Journal Section Articles
Authors

Emin Deniz Özkan

Oğuz Atik

Publication Date December 20, 2016
Published in Issue Year 2016 Volume: 8 Issue: 2

Cite

APA Özkan, E. D., & Atik, O. (2016). GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 8(2). https://doi.org/10.18613/deudfd.266162
AMA Özkan ED, Atik O. GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. December 2016;8(2). doi:10.18613/deudfd.266162
Chicago Özkan, Emin Deniz, and Oğuz Atik. “GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 8, no. 2 (December 2016). https://doi.org/10.18613/deudfd.266162.
EndNote Özkan ED, Atik O (December 1, 2016) GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 8 2
IEEE E. D. Özkan and O. Atik, “GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 8, no. 2, 2016, doi: 10.18613/deudfd.266162.
ISNAD Özkan, Emin Deniz - Atik, Oğuz. “GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 8/2 (December 2016). https://doi.org/10.18613/deudfd.266162.
JAMA Özkan ED, Atik O. GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2016;8. doi:10.18613/deudfd.266162.
MLA Özkan, Emin Deniz and Oğuz Atik. “GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 8, no. 2, 2016, doi:10.18613/deudfd.266162.
Vancouver Özkan ED, Atik O. GEMİ KÖPRÜ ÜSTÜ OTOMASYON SİSTEMLERİNİN KAPTAN VE KILAVUZ KAPTANLARIN DURUMSAL FARKINDALIK SEVİYESİYLE İLİŞKİSİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2016;8(2).

Articles published in this journal can not be used without referring to the journal. The authors are scientifically for their manuscripts.

Maritime Faculty Journal does not have article processing charges (APCs) or submission charges.

Dokuz Eylul University Publishing House Web Page
https://kutuphane.deu.edu.tr/yayinevi/


18320  18321 27187

18441  23882 23881  13875  


                                      27606  1388013876 27184 27186