BibTex RIS Cite

BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI

Year 2013, Volume: 28 Issue: 1, 119 - 144, 25.06.2013

Abstract

Envanter yönetimi, müşteri talebinin en düşük maliyetlerle zamanında karşılanmasınısağlar. Bu nedenle envanter yönetiminin doğru yapılması, işletmelere rekabet ortamındaüstünlük sağlayacağı gibi, maliyetlerini de azaltacaktır. Envanter kuramı literatüründekiklasik modellerin çoğu, ürünlerin süre kısıtlaması olmadan stoklanabileceğinden hareketlegeliştirilmiştir. Oysa sağlık, gıda gibi birçok alanda karşılaştığımız raf ömrü olan ürünlerinenvanter kontrolü, dayanıklı ürünlerin envanter kontrolünden farklıdır ve önemli birproblemdir. Bu çalışmada bozulabilir envanter probleminin genel yapısı ve dinamiklerikısaca açıklanmış, problemin hangi yönleri ile farklılık göstereceği incelenmiştir. Ayrıcabozulabilir envanter probleminin çözümüne önemli katkılar yapmış olan çalışmalararaştırılmış, uygun bir sınıflamaya göre bu çalışmalar kısaca sunulmuştur.

References

  • BAKKER, M., RIEZEBOS, J. ve TEUNTER, R. H. (2012), “Review of inventory systems with deterioration since 2001”, European Journal of Operational Research, 221, 275–284.
  • BARON, O., BERMAN, O. ve PERRY, D. (2010), “Continuous Review Inventory Models for Perishable Items Ordered in Batches”, Mathematical Methods of Operations Research, 72, 214-247.
  • BROEKMEULEN, R.A. ve VAN DONSELAAR, K.H. (2009), “A heuristic to manage perishable inventory with batch ordering, positive lead times, and time-varying demand”, Computers and Operations Research, 36, 3013
  • BULINSKAYA, E. (1964), “Some Results Concerning Inventory Policies”, Theory of Probability and Its Applications, 6 (6), 389-403.
  • CHAKRAVARTHY, S.R. (2010), “An inventory system with Markovian demands, phase type distributions for perishability and replenishment”, OPSEARCH, 47 (4), 266–283.
  • FRIEDMAN, Y. ve HOCH, Y. (1978), “A dynamic lot size model with inventory deterioration”, INFOR, 16, 183–188.
  • FRIES, B.E. (1975), “Optimal ordering policy for a perishable commodity with fixed lifetime”, Operations Research, 23, 46-61.
  • GOYAL, S. ve GIRI, B. (2001), “Recent trends in modeling of deteriorating”, European Journal of Operational Research, 134 (1), 1-16.
  • GÜRLER, Ü. ve ÖZKAYA, B.Y. (2008), “Analysis of the (s,S) policy for perishable with a random shelf life” IIE Transactions, 40 (8), 759-781.
  • HAIJEMA R., VAN DER VAL, J. ve VAN DIJK, N.M. (2007), “Blood platelet production: Optimization by dynamic programming and simulation”, Computers and Operations Research, 34, 760-779.
  • KALPAKAM, S. ve ARIVARIGNAN, G. (1988), “A continuous Review Perishable inventory model”, Statistics, 19 (3), 389-398.
  • KALPAKAM, S. ve ARIVARIGNAN, G. (1989), “On exhibiting inventory systems with Erlangian lifetimes under renewal demands”, Annals of the Institute of Statistical Mathematics, Vol. 41, No. 3, 601-616.
  • KALPAKAM, S. ve SAPNA, K. (1994), “Continuous review (s, S) inventory system with random lifetimes and positive leadtimes”, Operations Research Letters, 16, 115–119.
  • KALPAKAM, S. ve SHANTHI, S. (2006), “A continuous review perishable system with renewal demands”, Annals of Operations Research, 143 (1), 225.
  • KARAESMEN I. Z., SCHELLER-WOLF, A. ve DENIZ, B. (2011), “Managing Perishable and Aging Inventories: Review and Future Research Directions”, International Series in Operations Research & Management Science, 151, 393-436.
  • KASPI, H. ve PERRY, D. (1983), “Inventory systems for perishable commodities with renewal input and Poisson output”, Advances in Applied Probability, 16, 402–421.
  • KASPI, H. ve PERRY, D. (1984), “Inventory Systems for Perishable Commodities with Renewal Input and Poisson Output”, Advances in Applied Probability, Vol. 16, No. 2, 402-421.
  • LEVINA T., LEVIN, Y., MCGILL, J., NEDIAK, M. ve VOVK, V. (2010), “Weak aggregating algorithm for the distribution-free perishable inventory problem”, Operations Research Letters, 38, 516-521.
  • LIAN, Z. ve LIU, L. (2001), “Continuous review perishable inventory systems: models and heuristics”, IIE Transactions, 33 (9), 809-822.
  • LIAN, Z., LIU, L. ve ZHAO, N. (2009), “A perishable inventory model with Markovian renewal demands”, International Journal of Production Economics, 121 (1), 176-182.
  • LIU, L. ve SHI, D. (1999), “An (s,S) Model for Inventory with Exponential Lifetimes and renewal Demands”, Naval Research Logistics, 46, 39-56.
  • LIU, L. (1990), “(s,S) continuous review models for inventory with random lifetimes”, Operations Research Letters, 9, 161-167.
  • LIU, L. ve LIAN, Z. (1999), “(s, s) continuous review models for products with fixed lifetimes”, Operations Research, 47 (1), 150–158.
  • MINNER, S. ve TRANSCHEL, S. (2010), “Periodic review inventory control for perishable products under service-level constraints”, OR Spectrum, 32 (4), 979-996.
  • NAHMIAS, S. (1975), “Optimal ordering policies for perishable inventory-II”, Operations Research, 23, 735-749.
  • NAHMIAS, S. (1976), “Myopic Approximations for the Perishable Inventory Problem”, Management Science, 22(9), 1002-1008.
  • NAHMIAS, S. (1977a), “Higher-Order Approximations for the Perishable Inventory Problem”, Operations Research, vol. 25, no. 4, 630-640.
  • NAHMIAS, S. (1977b), “On Ordering Perishable Inventory when Both Demand and Lifetime are Random”, Management Science, vol. 24, no. 1, 90.
  • NAHMIAS, S. (1978), “The Fixed-Charge Perishable Inventory Problem”, Operations Research vol. 26, no. 3, 464-481.
  • NAHMIAS, S. (1982), “Perishable inventory theory: A review”, Operations Research, 30 (4), 680-708.
  • NAHMIAS, S. ve PIERSKALLA, W.P. (1973), “Optimal ordering policies for product that perishes in two periods subject to stochastic demand”,Naval Research Logistics Quarterly, 20 (2), 207-229.
  • NANDAKUMAR, P. ve MORTON, T. E. (1993), “Near myopic heuristics for the fixed-life perishable inventory problem”, Management Science, 39, 1498.
  • PARLAR, M., PERRY, D. ve STADJE, W. (2011), “FIFO versus LIFO Issuing Policies for Stochastic Perishable Inventory Systems”, Methodology and Computing in Applied Probability, 13, 405-417.
  • PIERSKALLA, W. ve ROACH, C. (1972), “Optimal issuing policies for perishable inventory”, Management Science, 18 (11), 603–614.
  • RAAFAT, F. (1991), “Survey of literature on continuously deteriorating inventory model”, Journal of the Operational Research Society, 42, 27-37.
  • RAVICHANDRAN, N. (1988), “Probabilistic Analysis of a Continuous Review Perishable Inventory System with Markovian Demand, Erlang Life and Non-instantaneous Leadtime”, Operation Research Spektrum, 10, 23-37
  • RAVICHANDRAN, N. (1995), “Stochastic Analysis of a Continuous Review Perishable Inventory System with Positive Leadtime and Poisson Demand”, European Journal of Operation Research, 84(2), 444-457. TEKIN, E., GÜRLER, Ü. ve BERK, E. (2001), “Age-based vs. stock level control policies for a perishable inventory system”, European Journal of Operational Research, 134, 309-329.
  • VAN ZYL, G.J.J. (1964), Inventory control for perishable commodities, Ph. D. Dissertation, University of North Carolina: USA. VEINOTT, A.F. (1960), Optimal Ordering, Issuing and Disposal of Inventory with Known demand, Unpublished Ph.D. dissertation, Columbia University: USA.
  • WEISS, H.Y. (1980), “Optimal Ordering Policies for Continuous Review Perishable Inventory Models”, Operations Research, 28(2), 365-374.
  • WILLIAMS, C.L. ve PATUWO, B.E. (1999), “A perishable inventory model with positive order leadtimes”, European Journal of Operational Research, 116, 352-373.
  • WILLIAMS, C.L. ve PATUWO, B.E. (2004), “Analysis of the effect of various unit costs on the optimal incoming quantity in a perishable inventory model”, European Journal of Operational Research, 156, 140

PERISHABLE INVENTORY PROBLEM AS A STOCHASTIC MODEL: A LITERATURE REVIEW

Year 2013, Volume: 28 Issue: 1, 119 - 144, 25.06.2013

Abstract

Inventory management allows satisfying customer demand on time with minimum cost.Hence, accurate management of inventory not only allows for superiority to companies inthe competitive environment but also minimize the inventory costs, as well. Most of theclassical models in inventory theory literature are developed for the products that can bestored without time limitation. However, the inventory management of some products whichhave a lifetime such as the products that are used in health or food industry is differentfrom the classical models and has been an important problem recently. In this study, thegeneral structure and dynamics of the perishable inventory have been explained briefly andthe aspects that differs the perishable problem from each other have been examined.Moreover, the literature those make considerable contributions on the inventorymanagement of perishable products have been studied and presented briefly with respect tothe appropriate classification.

References

  • BAKKER, M., RIEZEBOS, J. ve TEUNTER, R. H. (2012), “Review of inventory systems with deterioration since 2001”, European Journal of Operational Research, 221, 275–284.
  • BARON, O., BERMAN, O. ve PERRY, D. (2010), “Continuous Review Inventory Models for Perishable Items Ordered in Batches”, Mathematical Methods of Operations Research, 72, 214-247.
  • BROEKMEULEN, R.A. ve VAN DONSELAAR, K.H. (2009), “A heuristic to manage perishable inventory with batch ordering, positive lead times, and time-varying demand”, Computers and Operations Research, 36, 3013
  • BULINSKAYA, E. (1964), “Some Results Concerning Inventory Policies”, Theory of Probability and Its Applications, 6 (6), 389-403.
  • CHAKRAVARTHY, S.R. (2010), “An inventory system with Markovian demands, phase type distributions for perishability and replenishment”, OPSEARCH, 47 (4), 266–283.
  • FRIEDMAN, Y. ve HOCH, Y. (1978), “A dynamic lot size model with inventory deterioration”, INFOR, 16, 183–188.
  • FRIES, B.E. (1975), “Optimal ordering policy for a perishable commodity with fixed lifetime”, Operations Research, 23, 46-61.
  • GOYAL, S. ve GIRI, B. (2001), “Recent trends in modeling of deteriorating”, European Journal of Operational Research, 134 (1), 1-16.
  • GÜRLER, Ü. ve ÖZKAYA, B.Y. (2008), “Analysis of the (s,S) policy for perishable with a random shelf life” IIE Transactions, 40 (8), 759-781.
  • HAIJEMA R., VAN DER VAL, J. ve VAN DIJK, N.M. (2007), “Blood platelet production: Optimization by dynamic programming and simulation”, Computers and Operations Research, 34, 760-779.
  • KALPAKAM, S. ve ARIVARIGNAN, G. (1988), “A continuous Review Perishable inventory model”, Statistics, 19 (3), 389-398.
  • KALPAKAM, S. ve ARIVARIGNAN, G. (1989), “On exhibiting inventory systems with Erlangian lifetimes under renewal demands”, Annals of the Institute of Statistical Mathematics, Vol. 41, No. 3, 601-616.
  • KALPAKAM, S. ve SAPNA, K. (1994), “Continuous review (s, S) inventory system with random lifetimes and positive leadtimes”, Operations Research Letters, 16, 115–119.
  • KALPAKAM, S. ve SHANTHI, S. (2006), “A continuous review perishable system with renewal demands”, Annals of Operations Research, 143 (1), 225.
  • KARAESMEN I. Z., SCHELLER-WOLF, A. ve DENIZ, B. (2011), “Managing Perishable and Aging Inventories: Review and Future Research Directions”, International Series in Operations Research & Management Science, 151, 393-436.
  • KASPI, H. ve PERRY, D. (1983), “Inventory systems for perishable commodities with renewal input and Poisson output”, Advances in Applied Probability, 16, 402–421.
  • KASPI, H. ve PERRY, D. (1984), “Inventory Systems for Perishable Commodities with Renewal Input and Poisson Output”, Advances in Applied Probability, Vol. 16, No. 2, 402-421.
  • LEVINA T., LEVIN, Y., MCGILL, J., NEDIAK, M. ve VOVK, V. (2010), “Weak aggregating algorithm for the distribution-free perishable inventory problem”, Operations Research Letters, 38, 516-521.
  • LIAN, Z. ve LIU, L. (2001), “Continuous review perishable inventory systems: models and heuristics”, IIE Transactions, 33 (9), 809-822.
  • LIAN, Z., LIU, L. ve ZHAO, N. (2009), “A perishable inventory model with Markovian renewal demands”, International Journal of Production Economics, 121 (1), 176-182.
  • LIU, L. ve SHI, D. (1999), “An (s,S) Model for Inventory with Exponential Lifetimes and renewal Demands”, Naval Research Logistics, 46, 39-56.
  • LIU, L. (1990), “(s,S) continuous review models for inventory with random lifetimes”, Operations Research Letters, 9, 161-167.
  • LIU, L. ve LIAN, Z. (1999), “(s, s) continuous review models for products with fixed lifetimes”, Operations Research, 47 (1), 150–158.
  • MINNER, S. ve TRANSCHEL, S. (2010), “Periodic review inventory control for perishable products under service-level constraints”, OR Spectrum, 32 (4), 979-996.
  • NAHMIAS, S. (1975), “Optimal ordering policies for perishable inventory-II”, Operations Research, 23, 735-749.
  • NAHMIAS, S. (1976), “Myopic Approximations for the Perishable Inventory Problem”, Management Science, 22(9), 1002-1008.
  • NAHMIAS, S. (1977a), “Higher-Order Approximations for the Perishable Inventory Problem”, Operations Research, vol. 25, no. 4, 630-640.
  • NAHMIAS, S. (1977b), “On Ordering Perishable Inventory when Both Demand and Lifetime are Random”, Management Science, vol. 24, no. 1, 90.
  • NAHMIAS, S. (1978), “The Fixed-Charge Perishable Inventory Problem”, Operations Research vol. 26, no. 3, 464-481.
  • NAHMIAS, S. (1982), “Perishable inventory theory: A review”, Operations Research, 30 (4), 680-708.
  • NAHMIAS, S. ve PIERSKALLA, W.P. (1973), “Optimal ordering policies for product that perishes in two periods subject to stochastic demand”,Naval Research Logistics Quarterly, 20 (2), 207-229.
  • NANDAKUMAR, P. ve MORTON, T. E. (1993), “Near myopic heuristics for the fixed-life perishable inventory problem”, Management Science, 39, 1498.
  • PARLAR, M., PERRY, D. ve STADJE, W. (2011), “FIFO versus LIFO Issuing Policies for Stochastic Perishable Inventory Systems”, Methodology and Computing in Applied Probability, 13, 405-417.
  • PIERSKALLA, W. ve ROACH, C. (1972), “Optimal issuing policies for perishable inventory”, Management Science, 18 (11), 603–614.
  • RAAFAT, F. (1991), “Survey of literature on continuously deteriorating inventory model”, Journal of the Operational Research Society, 42, 27-37.
  • RAVICHANDRAN, N. (1988), “Probabilistic Analysis of a Continuous Review Perishable Inventory System with Markovian Demand, Erlang Life and Non-instantaneous Leadtime”, Operation Research Spektrum, 10, 23-37
  • RAVICHANDRAN, N. (1995), “Stochastic Analysis of a Continuous Review Perishable Inventory System with Positive Leadtime and Poisson Demand”, European Journal of Operation Research, 84(2), 444-457. TEKIN, E., GÜRLER, Ü. ve BERK, E. (2001), “Age-based vs. stock level control policies for a perishable inventory system”, European Journal of Operational Research, 134, 309-329.
  • VAN ZYL, G.J.J. (1964), Inventory control for perishable commodities, Ph. D. Dissertation, University of North Carolina: USA. VEINOTT, A.F. (1960), Optimal Ordering, Issuing and Disposal of Inventory with Known demand, Unpublished Ph.D. dissertation, Columbia University: USA.
  • WEISS, H.Y. (1980), “Optimal Ordering Policies for Continuous Review Perishable Inventory Models”, Operations Research, 28(2), 365-374.
  • WILLIAMS, C.L. ve PATUWO, B.E. (1999), “A perishable inventory model with positive order leadtimes”, European Journal of Operational Research, 116, 352-373.
  • WILLIAMS, C.L. ve PATUWO, B.E. (2004), “Analysis of the effect of various unit costs on the optimal incoming quantity in a perishable inventory model”, European Journal of Operational Research, 156, 140
There are 41 citations in total.

Details

Other ID JA38AD84JZ
Journal Section Articles
Authors

Umay UZUNOĞLU Koçer This is me

Bahar Yalçın

Publication Date June 25, 2013
Published in Issue Year 2013 Volume: 28 Issue: 1

Cite

APA Koçer, U. U., & Yalçın, B. (2013). BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 28(1), 119-144.
AMA Koçer UU, Yalçın B. BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. June 2013;28(1):119-144.
Chicago Koçer, Umay UZUNOĞLU, and Bahar Yalçın. “BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 28, no. 1 (June 2013): 119-44.
EndNote Koçer UU, Yalçın B (June 1, 2013) BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 28 1 119–144.
IEEE U. U. Koçer and B. Yalçın, “BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, vol. 28, no. 1, pp. 119–144, 2013.
ISNAD Koçer, Umay UZUNOĞLU - Yalçın, Bahar. “BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 28/1 (June 2013), 119-144.
JAMA Koçer UU, Yalçın B. BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2013;28:119–144.
MLA Koçer, Umay UZUNOĞLU and Bahar Yalçın. “BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, vol. 28, no. 1, 2013, pp. 119-44.
Vancouver Koçer UU, Yalçın B. BİR STOKASTİK MODEL OLARAK BOZULABİLİR ENVANTER PROBLEMİ: LİTERATÜR ARAŞTIRMASI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2013;28(1):119-44.