Vibration Analysis of a Cantilever Composite Beam by Equivalent Mass-Spring-Damper Systems
Year 2018,
Volume: 20 Issue: 60, 946 - 954, 15.09.2018
Şahin Yavuz
,
Mehmet Uyar
,
Levent Malgaca
,
Hira Karagülle
Abstract
Composite
materials are widely used in industrial structures such as manipulators because
they are lightweight and durable. In this work, the vibration analysis of a
cantilever composite beam with [0/90] lay-up was studied. An end point mass was
added to the structure. An initial displacement was applied to the end point
and the free vibration was analyzed experimentally first. Exponential
decay was found. Natural frequencies were determined by taking the Fast
Fourier Transform of the vibration signal. The system was analyzed in ANSYS and
simulation results were obtained. The damping coefficient was determined by
trial using the experimental exponential decay. An equivalent
mass-spring-damper model (MSD) was established using static deflection, natural
frequency and exponential decay obtained experimentally or by simulation.
MSD-analytical results were obtained by the Laplace transform method. The
experimental, simulation, and analytical results were compared for different
end point initial displacement values. It was observed that the results are in
good agreement.
References
- [1] Sina, S. A., Navazi, H. M., Haddadpour H. 2009. An analytical method for free vibration analysis of functionally graded beams, Materials and Design, Cilt. 30 , s. 741–747.
- [2] Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M., Carrera E. 2013. Free vibration analysis of composite beams via refined theories, Composites: Part B, Cilt. 44 , s. 540–552.
- [3] Ganesan, R., Zabihollah, A. 2007. Vibration analysis of tapered composite beams using a higher-order finite element. Part I: Formulation, Composite Structures, Cilt. 77, s. 306–318.
- [4] Li, J., Hu, X., Li, X. 2016. Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method. Journal of Composite Structures, Cilt. 158, s. 308-322.
- [5] Vo, T.P., Lee, J. 2009. Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory, International Journal of Mechanical Sciences, Cilt. 51, s. 631–641.
- [6] Ghafari, E., Rezaeepazhand, J. 2016. Vibration analysis of rotating composite beams using polynomial based dimensional reduction method. International Journal of Mechanical Sciences, Cilt. 115, s. 93-104.
- [7] Lee, I., Choi, K.K., Du, L., Gorsich, D. 2008. Dimension reduction method for reliability-based robust design optimization, Computers and Structures, Cilt. 86, s. 1550–1562.
- [8] Lu, W., Ge, F., Wu, X., Hong, Y. 2013. Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Marine Structures, Cilt. 31, s. 63–81.
- [9] Monciet, V. 2015. Combining FFT methods and standard variational principles to compute bounds and estimates for the properties of elastic composites. Computer Methods in Applied Mechanics and Engineering, Cilt. 283, s. 454-473.
- [10] Mariot, S., Leroy, V., Pierre, J., Elias, F., Bouthemy, E., Langevin, D. 2015. An FFT approach to the analysis of dynamic properties of gas/liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 473, s. 11-17.
- [11] Nagarajaiah, S., Basu, B. 2009. Output only modal identifi cation and structural damage detection using time frequency and wavelet techniques, Earthquake Engineering and Engineering Vibration, Cilt. 8, s.583-605.
- [12] Badour, F.A., Sunar, M., Cheeded, L. 2011. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Journal of Mechanical Systems and Signal Processing, Cilt. 25, s. 2083-2101.
- [13] Haosheng, L., Su, W., Kratz, H. 2007. FFT and wavelet-based analysis of the influence of machine vibrations on hard turned surface topographies. Tshingua Science and Technology, Cilt. 12(4), s. 441-446.
- [14] Kabel, M., Merkert, D., Schneider, M. 2015. Use of composite voxels in FFT-based homogenization. Computer Methods in Applied Mechanics and Engineering, Cilt. 294, s. 168–188.
- [15] S. Rao , Mechanical Vibrations, 5th ed., Prantice-Hall, Upper Saddle River, 2011 .
- [16] MicroStrain Inc. 2015. Web adresi: http://www.microstrain.com/wireless/sensors. Erişim tarihi: 02.11.2015.
- [17] Kiral, Z., Malgaca L., Akdağ, M. Kiral, B.G. 2009. Experimental Investigation of the Dynamic Response of a Symmetric Laminated Composite Beam Via Laser Vibrometry. Journal of Composite Materials. Cilt, 43(24), s. 2943-2962.
Eşdeğer Kütle-Yay-Sönüm Elemanı Kullanılan Ankastre Kompozit Bir Kirişin Titreşim Analizi
Year 2018,
Volume: 20 Issue: 60, 946 - 954, 15.09.2018
Şahin Yavuz
,
Mehmet Uyar
,
Levent Malgaca
,
Hira Karagülle
Abstract
Kompozit
malzemeler hafif ve dayanıklı oldukları için manipülatör olarak endüstriyel
yapılarda yaygın olarak kullanılmaktadır. Bu çalışmada, [0/90] oryantasyona
sahip ankastre kompozit bir kirişin titreşim analizi çalışılmıştır. Yapının
ucuna kütle eklenmiştir. Başlangıç koşulu olarak deplasman uç noktaya
uygulanmış ve deneysel sistemin serbest titreşimi elde edilmiştir.
Eksponansiyel sönüm bulunmuştur. Titreşim sinyalinin Hızlı Fourier dönüşümü
kullanılarak doğal frekanslar hesaplanmıştır. Sistem ANSYS programında analiz
edilmiş ve simülasyon sonuçları elde edilmiştir. Sönüm katsayısı, deneyden elde
edilen eksponansiyel sönümden yararlanılarak hesaplanmıştır. Deneysel ya da
simülasyondan elde edilen statik çökme, doğal frekans ve eksponansiyel sönüm
kullanılarak sistemin eşdeğer kütle-yay-sönüm elemanı oluşturulmuştur. Eşdeğer
kütle-yay-sönüm elemanı sonuçları Laplace dönüşüm metodu ile elde edilmiştir.
Deneysel, simülasyon ve analitik sonuçlar uç noktanın farklı başlangıç yer
değiştirme değerleri için karşılaştırılmıştır. Sonuçların uyumluluğu
gözlemlenmiştir.
References
- [1] Sina, S. A., Navazi, H. M., Haddadpour H. 2009. An analytical method for free vibration analysis of functionally graded beams, Materials and Design, Cilt. 30 , s. 741–747.
- [2] Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M., Carrera E. 2013. Free vibration analysis of composite beams via refined theories, Composites: Part B, Cilt. 44 , s. 540–552.
- [3] Ganesan, R., Zabihollah, A. 2007. Vibration analysis of tapered composite beams using a higher-order finite element. Part I: Formulation, Composite Structures, Cilt. 77, s. 306–318.
- [4] Li, J., Hu, X., Li, X. 2016. Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method. Journal of Composite Structures, Cilt. 158, s. 308-322.
- [5] Vo, T.P., Lee, J. 2009. Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory, International Journal of Mechanical Sciences, Cilt. 51, s. 631–641.
- [6] Ghafari, E., Rezaeepazhand, J. 2016. Vibration analysis of rotating composite beams using polynomial based dimensional reduction method. International Journal of Mechanical Sciences, Cilt. 115, s. 93-104.
- [7] Lee, I., Choi, K.K., Du, L., Gorsich, D. 2008. Dimension reduction method for reliability-based robust design optimization, Computers and Structures, Cilt. 86, s. 1550–1562.
- [8] Lu, W., Ge, F., Wu, X., Hong, Y. 2013. Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Marine Structures, Cilt. 31, s. 63–81.
- [9] Monciet, V. 2015. Combining FFT methods and standard variational principles to compute bounds and estimates for the properties of elastic composites. Computer Methods in Applied Mechanics and Engineering, Cilt. 283, s. 454-473.
- [10] Mariot, S., Leroy, V., Pierre, J., Elias, F., Bouthemy, E., Langevin, D. 2015. An FFT approach to the analysis of dynamic properties of gas/liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 473, s. 11-17.
- [11] Nagarajaiah, S., Basu, B. 2009. Output only modal identifi cation and structural damage detection using time frequency and wavelet techniques, Earthquake Engineering and Engineering Vibration, Cilt. 8, s.583-605.
- [12] Badour, F.A., Sunar, M., Cheeded, L. 2011. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Journal of Mechanical Systems and Signal Processing, Cilt. 25, s. 2083-2101.
- [13] Haosheng, L., Su, W., Kratz, H. 2007. FFT and wavelet-based analysis of the influence of machine vibrations on hard turned surface topographies. Tshingua Science and Technology, Cilt. 12(4), s. 441-446.
- [14] Kabel, M., Merkert, D., Schneider, M. 2015. Use of composite voxels in FFT-based homogenization. Computer Methods in Applied Mechanics and Engineering, Cilt. 294, s. 168–188.
- [15] S. Rao , Mechanical Vibrations, 5th ed., Prantice-Hall, Upper Saddle River, 2011 .
- [16] MicroStrain Inc. 2015. Web adresi: http://www.microstrain.com/wireless/sensors. Erişim tarihi: 02.11.2015.
- [17] Kiral, Z., Malgaca L., Akdağ, M. Kiral, B.G. 2009. Experimental Investigation of the Dynamic Response of a Symmetric Laminated Composite Beam Via Laser Vibrometry. Journal of Composite Materials. Cilt, 43(24), s. 2943-2962.