Research Article
BibTex RIS Cite

Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi.

Year 2019, Volume: 21 Issue: 63, 869 - 877, 20.09.2019

Abstract



Polimer
tabanlı kompozit malzemelerin yüksek dolgu oranlarındaki mekanik mukavemetlerinde
meydana gelen belirgin kayıpların, karbon tabanlı bileşenlerin matrise ilavesi
ile mekanik özelliklerin iyileştirilmesi günümüzde çalışılan konulardandır. Bu
çalışmada polipropilen matrise %40 ağırlıkça ilave edilen 20 mikron altı alüminyum
oksit (Al2O3) parçacıklarının yarattığı mekanik etkilerin
iyileştirilmesi amacı ile dolgu kompozisyonuna 1, 3, 5 ve %7 oranında grafen
nano plakları ilave edilmiştir. Yüksek hızlı termo-kinetik mikser de karıştırılarak
elde edilen hibrit kompozitler, evrensel mekanik test cihazı ile çekme ve 3
nokta eğme testleri yapılarak mekanik özellikleri araştırılmıştır. Çekme
numunelerinin kopma noktalarından alınan örnekler taramalı elektron mikroskobu
altında incelenerek, alümina ve grafen parçacıklarının dağılımı
gözlemlenmiştir. Elde edilen veriler ışığında, grafen parçacıkları ilave edilen
PP tabanlı kompozitlerin çekme dayanımlarında %12 ve eğilme dayanımlarının %20
in üstün de bir iyileşme sağladığı görülmüştür. Grafen parçacıklarının PP
içinde dağılımlarının homojen ve düzenli olduğu anlaşılmıştır.    




References

  • Referans 1. Rötting, O., Röpke, W., Becker, H., & Gärtner, C. (2002). Polymer microfabrication technologies. Microsystem Technologies, 8(1), 32-36. doi: 10.1007/s00542-002-0106-9
  • Referans 2. Mülhaupt, R. (2013). Green polymer chemistry and bio‐based plastics: dreams and reality. Macromolecular Chemistry and Physics, 214(2), 159-174.
  • Referans 3. Mohanty, A. K., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.
  • Referans 4. Pukanszky, B. (1990). Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites, 21(3), 255-262. Referans 5. Owen, N. A., Inderwildi, O. R., & King, D. A. (2010). The status of conventional world oil reserves—Hype or cause for concern? Energy policy, 38(8), 4743-4749.
  • Referans 6. Masters, C. D., Root, D., & Attanasi, E. (1994). [15] 5 World Petroleum Assessment and Analysis. Paper presented at the 14th World Petroleum Congress.
  • Referans 7. Zhao, X., Zhang, Q., Chen, D., & Lu, P. (2010). Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules, 43(5), 2357-2363.
  • Referans 8. Yang, Y., Gupta, M. C., & Dudley, K. L. (2007). Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18(34), 345701.
  • Referans 9. Kim, K.-H., Ong, J. L., & Okuno, O. (2002). The effect of filler loading and morphology on the mechanical properties of contemporary composites. The Journal of prosthetic dentistry, 87(6), 642-649.
  • Referans 10. Li, Y., Swartz, M., Phillips, R., Moore, B., & Roberts, T. (1985). Materials science effect of filler content and size on properties of composites. Journal of Dental Research, 64(12), 1396-1403.
  • Referans 11. Wu, Y.-P., Jia, Q.-X., Yu, D.-S., & Zhang, L.-Q. (2004). Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polymer testing, 23(8), 903-909.
  • Referans 12.Zaini, M., Fuad, M. A., Ismail, Z., Mansor, M., & Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40(1), 51-55.
  • Referans 13. Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.
  • Referans 14. Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites: CRC press.
  • Referans 15. Ward, I. M., & Sweeney, J. (2012). Mechanical properties of solid polymers: John Wiley & Sons.
  • Referans 16.Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (Vol. 5): John Wiley & Sons NY.
  • Referans 17.Nielsen, L. E. (1969). Dynamic mechanical properties of filled polymers: MONSANTO RESEARCH CORP ST LOUIS MO.
  • Referans 18.Gojny, F. H., Wichmann, M. H., Fiedler, B., & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Composites Science and Technology, 65(15-16), 2300-2313.
  • Referans 19. Dannenberg, E. (1975). The effects of surface chemical interactions on the properties of filler-reinforced rubbers. Rubber Chemistry and Technology, 48(3), 410-444.
  • Referans 20.Cho, J., Joshi, M., & Sun, C. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Composites Science and Technology, 66(13), 1941-1952.
  • Referans 21.Wang, M., Joseph, R., & Bonfield, W. (1998). Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials, 19(24), 2357-2366.
  • Referans 22. Ahmed, S., & Jones, F. (1990). A review of particulate reinforcement theories for polymer composites. Journal of Materials Science, 25(12), 4933-4942.
  • Referans 23. Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107-1110.
  • Referans 24. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125.
  • Referans 25. Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., . . . Sever, K. (2017). Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering. doi: https://doi.org/10.1016/j.compositesb.2017.08.017
  • Referans 26. Seki, Y., Avci, B., Uzun, S., Kaya, N., Atagur, M., Sever, K., & Sarikanat, M. The Using of Graphene Nano‐Platelets for a Better through‐Plane Thermal Conductivity for Polypropylene. Polymer composites.
  • Referans 27. Standard, A. (2010). D638-10, 2010. Standard Test Methods for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA.
  • Referans 28. Li, Y., Zhang, Y., & Zhang, Y. (2004). Morphology and mechanical properties of HDPE/SRP/elastomer composites: effect of elastomer polarity. Polymer testing, 23(1), 83-90.

Investigation Of The Effect Of Alumina-Graphene Hybrid Filler Mixtures On The Mechanical Properties Of Polypropylene Matrix.

Year 2019, Volume: 21 Issue: 63, 869 - 877, 20.09.2019

Abstract

Improvement of mechanical properties of polymer-based composite materials with high fill ratio and mechanical properties is the main reason for the improvement of mechanical properties by addition of carbon-based compounds to the matrix. In this study, 1, 3, 5 and 7% nano plaques were added to the filling composition in order to improve the mechanical effects of the 14-micron aluminum oxide (Al2O3) particles added to the polypropylene matrix by 40% by weight. Hybrid composites were obtained by mixing in high-speed thermo-kinetic mixer, tensile and 3 point bending tests were performed with universal mechanical test machine and their mechanical properties were investigated. The samples taken from the rupture points of the tensile specimens were examined under a scanning electron microscope (SEM) and the distribution of alumina and graphene particles was observed. According to data, it was seen that tensile strength of composites was increased nearly 12% and flexural strength increased almost 20% with the graphene particles addition into the PP matrix. The distribution of graphene particles in PP was homogenous and regular.










References

  • Referans 1. Rötting, O., Röpke, W., Becker, H., & Gärtner, C. (2002). Polymer microfabrication technologies. Microsystem Technologies, 8(1), 32-36. doi: 10.1007/s00542-002-0106-9
  • Referans 2. Mülhaupt, R. (2013). Green polymer chemistry and bio‐based plastics: dreams and reality. Macromolecular Chemistry and Physics, 214(2), 159-174.
  • Referans 3. Mohanty, A. K., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.
  • Referans 4. Pukanszky, B. (1990). Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites, 21(3), 255-262. Referans 5. Owen, N. A., Inderwildi, O. R., & King, D. A. (2010). The status of conventional world oil reserves—Hype or cause for concern? Energy policy, 38(8), 4743-4749.
  • Referans 6. Masters, C. D., Root, D., & Attanasi, E. (1994). [15] 5 World Petroleum Assessment and Analysis. Paper presented at the 14th World Petroleum Congress.
  • Referans 7. Zhao, X., Zhang, Q., Chen, D., & Lu, P. (2010). Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules, 43(5), 2357-2363.
  • Referans 8. Yang, Y., Gupta, M. C., & Dudley, K. L. (2007). Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18(34), 345701.
  • Referans 9. Kim, K.-H., Ong, J. L., & Okuno, O. (2002). The effect of filler loading and morphology on the mechanical properties of contemporary composites. The Journal of prosthetic dentistry, 87(6), 642-649.
  • Referans 10. Li, Y., Swartz, M., Phillips, R., Moore, B., & Roberts, T. (1985). Materials science effect of filler content and size on properties of composites. Journal of Dental Research, 64(12), 1396-1403.
  • Referans 11. Wu, Y.-P., Jia, Q.-X., Yu, D.-S., & Zhang, L.-Q. (2004). Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polymer testing, 23(8), 903-909.
  • Referans 12.Zaini, M., Fuad, M. A., Ismail, Z., Mansor, M., & Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40(1), 51-55.
  • Referans 13. Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.
  • Referans 14. Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites: CRC press.
  • Referans 15. Ward, I. M., & Sweeney, J. (2012). Mechanical properties of solid polymers: John Wiley & Sons.
  • Referans 16.Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (Vol. 5): John Wiley & Sons NY.
  • Referans 17.Nielsen, L. E. (1969). Dynamic mechanical properties of filled polymers: MONSANTO RESEARCH CORP ST LOUIS MO.
  • Referans 18.Gojny, F. H., Wichmann, M. H., Fiedler, B., & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Composites Science and Technology, 65(15-16), 2300-2313.
  • Referans 19. Dannenberg, E. (1975). The effects of surface chemical interactions on the properties of filler-reinforced rubbers. Rubber Chemistry and Technology, 48(3), 410-444.
  • Referans 20.Cho, J., Joshi, M., & Sun, C. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Composites Science and Technology, 66(13), 1941-1952.
  • Referans 21.Wang, M., Joseph, R., & Bonfield, W. (1998). Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials, 19(24), 2357-2366.
  • Referans 22. Ahmed, S., & Jones, F. (1990). A review of particulate reinforcement theories for polymer composites. Journal of Materials Science, 25(12), 4933-4942.
  • Referans 23. Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107-1110.
  • Referans 24. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125.
  • Referans 25. Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., . . . Sever, K. (2017). Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering. doi: https://doi.org/10.1016/j.compositesb.2017.08.017
  • Referans 26. Seki, Y., Avci, B., Uzun, S., Kaya, N., Atagur, M., Sever, K., & Sarikanat, M. The Using of Graphene Nano‐Platelets for a Better through‐Plane Thermal Conductivity for Polypropylene. Polymer composites.
  • Referans 27. Standard, A. (2010). D638-10, 2010. Standard Test Methods for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA.
  • Referans 28. Li, Y., Zhang, Y., & Zhang, Y. (2004). Morphology and mechanical properties of HDPE/SRP/elastomer composites: effect of elastomer polarity. Polymer testing, 23(1), 83-90.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Nusret Kaya 0000-0003-1727-3155

Hakan Bilgili This is me 0000-0001-5646-6641

Mustafa Can 0000-0002-1749-8293

Publication Date September 20, 2019
Published in Issue Year 2019 Volume: 21 Issue: 63

Cite

APA Kaya, N., Bilgili, H., & Can, M. (2019). Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(63), 869-877.
AMA Kaya N, Bilgili H, Can M. Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi. DEUFMD. September 2019;21(63):869-877.
Chicago Kaya, Nusret, Hakan Bilgili, and Mustafa Can. “ Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 63 (September 2019): 869-77.
EndNote Kaya N, Bilgili H, Can M (September 1, 2019) Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 63 869–877.
IEEE N. Kaya, H. Bilgili, and M. Can, “ Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi”., DEUFMD, vol. 21, no. 63, pp. 869–877, 2019.
ISNAD Kaya, Nusret et al. “ Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/63 (September 2019), 869-877.
JAMA Kaya N, Bilgili H, Can M. Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi. DEUFMD. 2019;21:869–877.
MLA Kaya, Nusret et al. “ Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 63, 2019, pp. 869-77.
Vancouver Kaya N, Bilgili H, Can M. Alumina-Grafen Hibrit Dolgu Karışımlarının, Polipropilen Matriksin Mekanik Özelliklerine Etkisinin Incelenmesi. DEUFMD. 2019;21(63):869-77.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.