Research Article
BibTex RIS Cite

A Study on Controlled Blasting at A Quarry

Year 2019, Volume: 21 Issue: 63, 911 - 925, 20.09.2019
https://doi.org/10.21205/deufmd.2019216319

Abstract

From all of the
environmental problems, blast-induced vibrations often cause concern to
surrounding residents. It is often claimed that damage to building
superstructures is due to blasting, and sometimes the building owner files a
lawsuit against the company that perform blasting operations. The
blast-vibration problem has been thoroughly investigated in the past and
continiues to be the subject of ongoing research. This study contains necessary
work to ensure that detonations to be made in the quarry operating within
highway project do not adversely affect to the karstic limestones at the depth
of 9-10 m from the surace and groundwater. For this purpose, the vibration
measurement and analysis have been carried out and a new methodology in
minimizing the blast induced ground vibrations at the target location, was also
applied. Peak particle velocity and dominant frequencies were taken into
consideration in analyzing the blast-induced ground vibration. The methodology
aims to employ the most suitable time delays among blast-hole groups to render
destructive interference of surface waves at the target location.

References

  • [1]Shi, Y., Li, Z. X. and Hao, H. (2009), "Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns", Structural Engineering and Mechanics, 32, (2), 251-267.
  • [2] Haciefendioglu, K., Banerjee, S., Soyluk, K.. and Koksal, O. (2015), "Multi-point response spectrum analysis of a historical bridge to blast ground motion", Structural Engineering and Mechanics, 53, (5), 897-919Karu, Z.Z. (2002), “Signals and Systems Made Ridiculously Simple”, ISBN 0-9633752-1-4, ZiZi Press, 124.
  • [3] Oncu, M. E., Yon, B., Akkoyun, O. and Taskiran, T. (2015), "Investigation of blast-induced ground vibration effects on rural buildings", Structural Engineering and Mechanics, 54, (3), 545-560.
  • [4] Nam, J.W., Kim, H. J., Yi, N. H., Kim, I. S., Jay Kim, J. H. and Choi, H. J. (2009), "Blast analysis of concrete arch structures for FRP retrofitting design", Computers and Concrete, 6, (4), 305-318.
  • [5] Toy, A. T. and Sevim, B., (2017) "Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive", Advances in Concrete Construction, 5, (5), 493-512.
  • [6] Ak, H., Iphar, M., Yavuz, M. and Konuk, A. (2009), “Evaluation of ground vibration effect of blasting operations in a magnesite mine”, Soil Dyn. Earthq. Eng., 29(4), 669-676.
  • [7] Dindarloo, S.R. (2015), “Prediction of blast-induced ground vibrations via genetic programming”, Int. J. Min. Sci. Technol., 25(6), 1011-1015.
  • [8] Aksoy, C.O. (2014), "Proposed chart for the selection of impact hammer", Int. Journal of Rock Mechanics and Mining Sciences, 68, Pages 120-127.
  • [9] Kucuk, K., Genis, M., Onargan, T., Aksoy, C.O., Guney, A. and Altındağ, R. (2009), "Chemical injection to prevent building damage induced by ground water drainage from shallow tunnels", International Journal of Rock Mechanics and Mining Sciences,46, Issue 7, October 2009, Pages 1136-1143.
  • [10] Cardu, M., Mucci, A. and Uyar, G.G.U. (2015), "Investigating the effects of bench geometry and delay times on the blast induced vibrations in an open-pit quarry", Geoingegneria Ambientale e Mineraria, 144 (1), pp. 45-56.
  • [11] Kalantari, B. (2011), "Strength evaluation of air cured, cement treated peat with blast furnace slag", Geomechanics and Engineering, 3 (3), 207-218.
  • [12] Li, X., Wang, E., Li, Z., Bie, X., Chen, L., Feng, J. and Li, N. (2016), "Blasting wave pattern recognition based on Hilbert-Huang transform", Geomechanics and Engineering, 11 (5), 607-624.
  • [13] Zhang, Z.C., Liu, H.L., Pak, R.Y.S. and Chen, Y.M. (2014), "Computational modeling of buried blast-induced ground motion and ground subsidence", Geomechanics and Engineering, 7 (6), 613-631.
  • [14] Jeon, S., Kim, T.H., and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomechanics and Engineering, 9 (3), 329-344.
  • [15] Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomechanics and Engineering, 11 (3), 421-438.
  • [16] Siskind, D.E. (2000), “Vibrations from blasting, International Society of Explosives Engineers”, 120.
  • [17] Kearey P. and Brooks M. (1991),“An introduction to geophysical exploration”, Blackwell Scientific Publications.
  • [18] Aldas, G.G.U., Ecevitoğlu, B., Can A., Unucok B. and Sagol O. (2006), “Technical report: Minimisation of blast-induced ground vibration at TKİ GELİ Lignite Mine, Muğla Turkey, (in Turkish).
  • [19] Uyar, G.G.U. and Babayigit, E., (2016), "Guided wave formation in coal mines and associated effects to buildings", Structural Engineering and Mechanics, 60 (6), pp. 923-937.
  • [20] Oriard, L.L. (1989), The scale of effects in evaluating vibration damage program potential, in Proceedings of 15th Conference on Explosive and Blasting Techniques, pp. 161 – 176.
  • [21] Scott, A., Cicker, A., Djordjevic, N., Higgins, M., La Rosa, D., Sarma, K.S. and Wedmaier, R. (1996), Open Pit Blast Design: Analysis and Optimization, Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Australia.
  • [22] Siskind, D.E.,Stagg, M.S., Kopp, J.W., Dowding, C.H., 1980, Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting, RI 8507, Bureau of Mines, 74 pages.
  • [23] Blair, D.P. (1990), Some problems associated with standard charge weight vibration scaling laws. 3rd International Symposium on fragmentation by blasting, Brisbane, pp. 149–158.
  • [24] Dowding, C.H. (1996), Construction Vibrations, pp. 1 – 610, (Prentice Hall: New York).
  • [25] Singh, P.K., Vogt, W., Singh, R.B. and Singh, D.P. (1996), Blasting side effects: investigations in an opencast coal mine in India. Int. J. Surf. Mining, Reclam. Environ., 10, 155 – 159.
  • [26] Singh, P.K., Sirveiya, K.N., Babu, K.N., Roy, M.P. and Singh, C.V. (2006), Evolution of effective charge weight per delay for prediction of ground vibrations generated from blasting in a limestone mine. Int. J. Mining, Reclam. Environ, 20,4 – 19.
  • [27] Zhang, J. (2000), Explosives and Blasting Technique, R. Holmberg (Ed.), Balkema, Rotterdam, pp. 335-341.
  • [28] Venkatesh, H.S. (2005), "Influence of total charge in a blast on the intensity of ground vibrations-field experiment and computer simulation", Fragblast, 9 (3) (2005), pp. 127-138.
  • [29] Aldas, G.G.U. and Ecevitoglu, B. (2007), “ Methodology for minimising blast-induced ground vibration” TPE. 2007/03459
  • [30] Aldas, G.G.U., 2005, “Application of the Stockwell Transform to Blasting Induced Ground Vibration”, International Journal of Surface Mining, Reclamation and Environment, Vol.19, No.2, pp.100-107.
  • [31] Aldas, G.G.U., 2010, “Investigation of blast design parameters from the point of seismic signals”, International Journal of Surface Mining, Reclamation and Environment, Vol. 24. Issue 1, pp.80-90.
  • [32] Dowding, C.H. (1985), “Blast Vibration Monitoring and Control”, Prentice-Hall, Inc., Englewood Cliffs, NJ.
  • [33] Siskind, D.E., Crum, S.V., Plis, M.N., 1993, BlastVibrationsandOtherPotentialCauses of Damage in HomesNear a LargeSurfaceCoal Mine in Indiana, RI 9455, Bureau of Mines, 62 pages.
  • [34] ÇGYDD, 2005, “2002/49/EC sayılı Çevresel Gürültünün Yönetimi ve Değerlendirilmesi Direktifine paralel olarak hazırlanmış olan bir yönetmelik”.
  • [35] DIN 4150-3. Structuralvibration-Effects of vibration on structures. http://webstore.ansi.org/; 1999.
  • [36] Konya C., 1990, Surface Blast Design. Prentice Hall, 303 pages.

Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma

Year 2019, Volume: 21 Issue: 63, 911 - 925, 20.09.2019
https://doi.org/10.21205/deufmd.2019216319

Abstract

Patlatma kaynaklı titreşimler çevre sakinlerini, tüm
çevresel sorunlardan daha fazla endişelendirmektedir. Bina üst yapılarına
verilen zararın patlatmadan kaynaklandığı iddia edilmektedir ve bazen bina
sahibi, patlatma işlemlerini gerçekleştiren şirkete karşı dava açmaktadır.
Patlatma kaynaklı titreşim problemi geçmişte kapsamlı bir şekilde araştırılmış
ve devam eden araştırmalara konu olmaya devam etmektedir. Bu makale, bir otoyol
prosesi kapsamında faaliyet gösteren taş ocağında yapılacak patlatmaların
yüzeyden 9-10 m derindeki karstik kireçtaşlarına ve yeraltı sularına herhangi
bir olumsuz etki etmemesi için gerekli çalışmaları içermektedir. Bu amaçla,
titreşim ölçümü ve analizi yapılmış ve hedef bölgedeki patlatma kaynaklı yer
titreşimlerini en aza indirgeyen yeni bir metodoloji uygulanmıştır. Patlatmanın
neden olduğu zemin titreşiminin analizinde tepe partikül hızı ve baskın
frekanslar dikkate alınmıştır. Metodoloji, hedef bölgedeki yüzey dalgalarının
tahribatlı etkileşimini sağlamak için patlatma deliği gruplamaları arasında en
uygun zaman gecikmelerini kullanmayı amaçlamaktadır.

References

  • [1]Shi, Y., Li, Z. X. and Hao, H. (2009), "Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns", Structural Engineering and Mechanics, 32, (2), 251-267.
  • [2] Haciefendioglu, K., Banerjee, S., Soyluk, K.. and Koksal, O. (2015), "Multi-point response spectrum analysis of a historical bridge to blast ground motion", Structural Engineering and Mechanics, 53, (5), 897-919Karu, Z.Z. (2002), “Signals and Systems Made Ridiculously Simple”, ISBN 0-9633752-1-4, ZiZi Press, 124.
  • [3] Oncu, M. E., Yon, B., Akkoyun, O. and Taskiran, T. (2015), "Investigation of blast-induced ground vibration effects on rural buildings", Structural Engineering and Mechanics, 54, (3), 545-560.
  • [4] Nam, J.W., Kim, H. J., Yi, N. H., Kim, I. S., Jay Kim, J. H. and Choi, H. J. (2009), "Blast analysis of concrete arch structures for FRP retrofitting design", Computers and Concrete, 6, (4), 305-318.
  • [5] Toy, A. T. and Sevim, B., (2017) "Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive", Advances in Concrete Construction, 5, (5), 493-512.
  • [6] Ak, H., Iphar, M., Yavuz, M. and Konuk, A. (2009), “Evaluation of ground vibration effect of blasting operations in a magnesite mine”, Soil Dyn. Earthq. Eng., 29(4), 669-676.
  • [7] Dindarloo, S.R. (2015), “Prediction of blast-induced ground vibrations via genetic programming”, Int. J. Min. Sci. Technol., 25(6), 1011-1015.
  • [8] Aksoy, C.O. (2014), "Proposed chart for the selection of impact hammer", Int. Journal of Rock Mechanics and Mining Sciences, 68, Pages 120-127.
  • [9] Kucuk, K., Genis, M., Onargan, T., Aksoy, C.O., Guney, A. and Altındağ, R. (2009), "Chemical injection to prevent building damage induced by ground water drainage from shallow tunnels", International Journal of Rock Mechanics and Mining Sciences,46, Issue 7, October 2009, Pages 1136-1143.
  • [10] Cardu, M., Mucci, A. and Uyar, G.G.U. (2015), "Investigating the effects of bench geometry and delay times on the blast induced vibrations in an open-pit quarry", Geoingegneria Ambientale e Mineraria, 144 (1), pp. 45-56.
  • [11] Kalantari, B. (2011), "Strength evaluation of air cured, cement treated peat with blast furnace slag", Geomechanics and Engineering, 3 (3), 207-218.
  • [12] Li, X., Wang, E., Li, Z., Bie, X., Chen, L., Feng, J. and Li, N. (2016), "Blasting wave pattern recognition based on Hilbert-Huang transform", Geomechanics and Engineering, 11 (5), 607-624.
  • [13] Zhang, Z.C., Liu, H.L., Pak, R.Y.S. and Chen, Y.M. (2014), "Computational modeling of buried blast-induced ground motion and ground subsidence", Geomechanics and Engineering, 7 (6), 613-631.
  • [14] Jeon, S., Kim, T.H., and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomechanics and Engineering, 9 (3), 329-344.
  • [15] Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomechanics and Engineering, 11 (3), 421-438.
  • [16] Siskind, D.E. (2000), “Vibrations from blasting, International Society of Explosives Engineers”, 120.
  • [17] Kearey P. and Brooks M. (1991),“An introduction to geophysical exploration”, Blackwell Scientific Publications.
  • [18] Aldas, G.G.U., Ecevitoğlu, B., Can A., Unucok B. and Sagol O. (2006), “Technical report: Minimisation of blast-induced ground vibration at TKİ GELİ Lignite Mine, Muğla Turkey, (in Turkish).
  • [19] Uyar, G.G.U. and Babayigit, E., (2016), "Guided wave formation in coal mines and associated effects to buildings", Structural Engineering and Mechanics, 60 (6), pp. 923-937.
  • [20] Oriard, L.L. (1989), The scale of effects in evaluating vibration damage program potential, in Proceedings of 15th Conference on Explosive and Blasting Techniques, pp. 161 – 176.
  • [21] Scott, A., Cicker, A., Djordjevic, N., Higgins, M., La Rosa, D., Sarma, K.S. and Wedmaier, R. (1996), Open Pit Blast Design: Analysis and Optimization, Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Australia.
  • [22] Siskind, D.E.,Stagg, M.S., Kopp, J.W., Dowding, C.H., 1980, Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting, RI 8507, Bureau of Mines, 74 pages.
  • [23] Blair, D.P. (1990), Some problems associated with standard charge weight vibration scaling laws. 3rd International Symposium on fragmentation by blasting, Brisbane, pp. 149–158.
  • [24] Dowding, C.H. (1996), Construction Vibrations, pp. 1 – 610, (Prentice Hall: New York).
  • [25] Singh, P.K., Vogt, W., Singh, R.B. and Singh, D.P. (1996), Blasting side effects: investigations in an opencast coal mine in India. Int. J. Surf. Mining, Reclam. Environ., 10, 155 – 159.
  • [26] Singh, P.K., Sirveiya, K.N., Babu, K.N., Roy, M.P. and Singh, C.V. (2006), Evolution of effective charge weight per delay for prediction of ground vibrations generated from blasting in a limestone mine. Int. J. Mining, Reclam. Environ, 20,4 – 19.
  • [27] Zhang, J. (2000), Explosives and Blasting Technique, R. Holmberg (Ed.), Balkema, Rotterdam, pp. 335-341.
  • [28] Venkatesh, H.S. (2005), "Influence of total charge in a blast on the intensity of ground vibrations-field experiment and computer simulation", Fragblast, 9 (3) (2005), pp. 127-138.
  • [29] Aldas, G.G.U. and Ecevitoglu, B. (2007), “ Methodology for minimising blast-induced ground vibration” TPE. 2007/03459
  • [30] Aldas, G.G.U., 2005, “Application of the Stockwell Transform to Blasting Induced Ground Vibration”, International Journal of Surface Mining, Reclamation and Environment, Vol.19, No.2, pp.100-107.
  • [31] Aldas, G.G.U., 2010, “Investigation of blast design parameters from the point of seismic signals”, International Journal of Surface Mining, Reclamation and Environment, Vol. 24. Issue 1, pp.80-90.
  • [32] Dowding, C.H. (1985), “Blast Vibration Monitoring and Control”, Prentice-Hall, Inc., Englewood Cliffs, NJ.
  • [33] Siskind, D.E., Crum, S.V., Plis, M.N., 1993, BlastVibrationsandOtherPotentialCauses of Damage in HomesNear a LargeSurfaceCoal Mine in Indiana, RI 9455, Bureau of Mines, 62 pages.
  • [34] ÇGYDD, 2005, “2002/49/EC sayılı Çevresel Gürültünün Yönetimi ve Değerlendirilmesi Direktifine paralel olarak hazırlanmış olan bir yönetmelik”.
  • [35] DIN 4150-3. Structuralvibration-Effects of vibration on structures. http://webstore.ansi.org/; 1999.
  • [36] Konya C., 1990, Surface Blast Design. Prentice Hall, 303 pages.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Vehbi Özacar 0000-0002-5842-8777

Publication Date September 20, 2019
Published in Issue Year 2019 Volume: 21 Issue: 63

Cite

APA Özacar, V. (2019). Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(63), 911-925. https://doi.org/10.21205/deufmd.2019216319
AMA Özacar V. Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma. DEUFMD. September 2019;21(63):911-925. doi:10.21205/deufmd.2019216319
Chicago Özacar, Vehbi. “Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 63 (September 2019): 911-25. https://doi.org/10.21205/deufmd.2019216319.
EndNote Özacar V (September 1, 2019) Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 63 911–925.
IEEE V. Özacar, “Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma”, DEUFMD, vol. 21, no. 63, pp. 911–925, 2019, doi: 10.21205/deufmd.2019216319.
ISNAD Özacar, Vehbi. “Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/63 (September 2019), 911-925. https://doi.org/10.21205/deufmd.2019216319.
JAMA Özacar V. Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma. DEUFMD. 2019;21:911–925.
MLA Özacar, Vehbi. “Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 63, 2019, pp. 911-25, doi:10.21205/deufmd.2019216319.
Vancouver Özacar V. Ariyet Ocağında Kontrollü Patlatmalarla İlgili Bir Çalışma. DEUFMD. 2019;21(63):911-25.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.