Research Article
BibTex RIS Cite

Elektrikli Araç Batarya Şarj Uygulamaları için LC/S Kompanzasyonlu Bir Kablosuz Güç Transferi Dönüştürücüsünün Tasarımı

Year 2021, Volume: 23 Issue: 68, 459 - 468, 24.05.2021
https://doi.org/10.21205/deufmd.2021236809

Abstract

Kablosuz güç transferi (KGT), güvenilir olması, emniyetli olması ve su geçirmez gibi önemli avantajları ile dikkat çekmektedir. Bu çalışma, elektrikli araç batarya şarj uygulamaları için bir KGT dönüştürücüsünün tasarım metodunu sunmaktadır. KGT dönüştürücüsündeki her bir eleman için güç kayıp analizi verilmiştir. Dönüştürücü elemanları, düşük güç kaybı ve yüksek verim verecek şekilde belirlenmiştir. Aynı zamanda, yüksek güç yoğunluğu avantajı doğrultusunda, tasarımda Lithium-ion batarya tercih edilmiştir. Tasarlanan sistem çıkış akım ve gerilim regülasyonu için bir dc-dc dönüştürücü kullanmadığı için sunulan sistemin boyutları ve ağırlığı düşürülebilir. Son olarak, verilen tasarım prosedürüne göre 2 kW çıkış gücü ve çıkış gerilimi 250 V-400 V aralığında değişen bir KGT dönüştürücüsünün manyetik-elektrik ortak simülasyonu gerçeklenmiştir. Simülasyon çalışmasında, dönüştürücünün maksimum verimi, 0,3 kuplaj katsayısı ile %96,70 civarında elde edilmiştir.

References

  • [1] Li, S., Mi, C.C. 2015. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Topics Power Electronics. Vol. 3, no. 1, pp. 4–17. DOI:10.1109/JESTPE.2014.2319453.
  • [2] Zhang, Z., Pang, H., Georgiadis, A., Cecati, C. 2019. Wireless power transfer - an overview. IEEE Trans. Ind. Electronics. Vol. 66, no. 2, pp. 1044–1058. DOI: 10.1109/TIE.2018.2835378.
  • [3] Zhang, W., Wong, S.C., Tse, C.K. 2014. Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems. IEEE Trans. Power Electron. Vol. 29, no. 1, pp. 191– 200. DOI: 10.1109/TPEL.2013.2249112.
  • [4] Song, K., Li, Z., Jiang, J., Zhu, C. 2018. Constant current/voltage charging operation for series–series and series–parallel compensated wireless power transfer systems employing primary side controller. IEEE Trans. on Power Electron. Vol. 33, no. 9, pp. 8065-8080. DOI: 10.1109/TPEL.2017.2767099.
  • [5] Chen, M., Rinc´on-Mora, G.A. 2006. Accurate, compact and power-efficient Lithium-ion battery charger circuit. IEEE Transactions on Circuits Systems II, Exp. Briefs. Vol. 53, no. 11, pp. 1180–1184. DOI:10.1109/TCSII.2006.883220.
  • [6] Dearborn, S. 2005. Charging Lithium-ion batteries for maximum run times. Power Electronics Technology Magazine. Vol. 31, pp. 40-49.
  • [7] Yao, Y., Wang, Y., Liu, X.., Lin, F., Xu, D.G. 2018. A Novel Parameter Tuning Method for Double-sided LCL Compensated WPT System with Better Comprehensive Performance. IEEE Trans. Power Electron. Vol. 33, no. 10, pp. 8525–8536. DOI:10.1109/TPEL.2017.2778255.
  • [8] Zhang, W., Mi, C.C. 2016. Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. Vol. 65, no. 6, pp. 4768–4778. DOI:10.1109/TVT.2015.2454292.
  • [9] Hou, J., Chen, Q., Wong, S.C., Tse, C.K., Ruan, X. 2015. Analysis and control of series/series–parallel compensated resonant converter for contactless power transfer. IEEE Trans. Emerg. Sel. Top. Power Electron. Vol. 3, no. 1, pp. 124–136. DOI:10.1109/JESTPE.2014.2336811.
  • [10] Liu, C., Ge, S., Guo, Y., Li, H., Cai, G. 2016. Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis. IET Power Electron. Vol. 9, no. 11, pp. 2262–2270. DOI:10.1049/iet-pel.2015.0186.
  • [11] Wang, C. S., Covic, G.A., Stielau, O.H. 2004. Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE transactions on Power Electronics. Vol. 19, no. 4, pp. 995-1002. DOI:10.1109/TPEL.2004.830098.
  • [12] Li, S., Li, W., Deng, J., Nguyen, T.D., Mi, C.C. 2015. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technology. Vol. 64, no. 6, pp. 2261–2273. DOI:10.1109/TVT.2014.2347006.
  • [13] Kan, T., Nguyen, T. D., Wjite, J.C., Malhan, R.K., Mi, C.C. 2017. A new integration method for an electric vehicle wireless charging system using LCC compensation topology. IEEE Trans. Power Electronics. Vol. 32, no. 2, pp. 1638–1650. DOI:10.1109/TPEL.2016.2552060.
  • [14] Kan, T., Lu, F., Nguyen, T.D., Mercier, P.P., Mi, C.C. 2018. Integrated Coil Design for EV Wireless Charging Systems Using LCC Compensation Topology. IEEE Transactions on Power Electronics. Vol. 33, no. 11, pp. 9231-9241. DOI:10.1109/TPEL.2018.2794448.
  • [15] Vu, V.B., Doan, V.T., Pham, V.L., Choi, W.J. 2016. A new method to implement the constant current- constant voltage charge of the inductive power transfer system for electric vehicle applications. IEEE Transp. Electrification Conf. Expo., Asia-Pac., Busan, South Korea, 1-4 July, pp. 449–453.
  • [16] Li, W., Zhao, H., Deng, J., Li, S., Mi, C.C. 2016. Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Transactions on Vehicular Technology. Vol. 65, no: 6, pp. 4429-4439, DOI:10.1109/TVT.2015.2479938.
  • [17] Zhu, Q., Wang, L., Guo, Y., Liao, C., Li, F. 2016. Applying LCC Compensation Network to Dynamic Wireless EV Charging System. IEEE Transactions on Industrial Electronics. Vol. 63 no. 10, pp. 6557-6567, DOI:10.1109/TIE.2016.2529561.
  • [18] Wang, Y., Yao, Y., Liu, X., Xu, D. 2017. S/CLC compensation topology analysis and circular coil design for wireless power transfer. IEEE Trans. Transp. Electrific. Vol. 3, no. 2, pp. 496–507, DOI: 10.1109/TTE.2017.2651067.
  • [19] Wang, Y., Yao, Y., Liu, X., Xu, D. G., Cai, L. 2018. An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. Vol. 33, no. 3, pp. 2007–2025, DOI:10.1109/TPEL.2017.2698002.
  • [20] Aditya, K., Sood, V. K., Williamson, S.S. 2017. Magnetic characterization of unsymmetrical coil pairs using Archimedean spirals for wider misalignment tolerance in IPT systems. IEEE transactions on transportation electrification. Vol. 3, no. 2, pp. 454-463, DOI:10.1109/TTE.2017.2673847.
  • [21] Ahmad, A., Alam, M.S., Chabaan, R. 2018. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans. Transport. Electrific. Vol. 4, no. 1, pp. 38–63, DOI:10.1109/TTE.2017.2771619.
  • [22] Badstuebner, U., Biela, J., Kolar, J.W. 2010. Design of an 99%-efficient, 5kW, phase-shift PWM DC–DC converter for telecom applications. IEEE Appl. Power Electron. Conf., 21-25 February, pp. 773–780. DOI:10.1109/APEC.2010.5433582.

Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications

Year 2021, Volume: 23 Issue: 68, 459 - 468, 24.05.2021
https://doi.org/10.21205/deufmd.2021236809

Abstract

Wireless power transfer (WPT) has drawn a lot of attention due to its significant advantages such as safety, reliability, weather proof, etc. This paper presents the design methodology of a WPT converter with LC/S compensation topology for electrical vehicle (EV) battery charge applications. The power loss analysis is employed for each component in the WPT converter. The components in the converter are determined based on low power loss and high-power efficiency. The Lithium- ion battery is also preferred in the design due to it’s high power density advantage. Since the designed WPT system does not use a dc-dc converter to regulate the output current and voltage, the size and the weight of the overall system can be reduced. Finally, according to given design procedure, a field-electric common simulation of WPT converter is performed with 2 kW output power while the output voltage is changing between 250 V-400 V. The simulated peak efficiency of the converter is obtained around 96.70% with 0.3 coupling coefficient.

References

  • [1] Li, S., Mi, C.C. 2015. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Topics Power Electronics. Vol. 3, no. 1, pp. 4–17. DOI:10.1109/JESTPE.2014.2319453.
  • [2] Zhang, Z., Pang, H., Georgiadis, A., Cecati, C. 2019. Wireless power transfer - an overview. IEEE Trans. Ind. Electronics. Vol. 66, no. 2, pp. 1044–1058. DOI: 10.1109/TIE.2018.2835378.
  • [3] Zhang, W., Wong, S.C., Tse, C.K. 2014. Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems. IEEE Trans. Power Electron. Vol. 29, no. 1, pp. 191– 200. DOI: 10.1109/TPEL.2013.2249112.
  • [4] Song, K., Li, Z., Jiang, J., Zhu, C. 2018. Constant current/voltage charging operation for series–series and series–parallel compensated wireless power transfer systems employing primary side controller. IEEE Trans. on Power Electron. Vol. 33, no. 9, pp. 8065-8080. DOI: 10.1109/TPEL.2017.2767099.
  • [5] Chen, M., Rinc´on-Mora, G.A. 2006. Accurate, compact and power-efficient Lithium-ion battery charger circuit. IEEE Transactions on Circuits Systems II, Exp. Briefs. Vol. 53, no. 11, pp. 1180–1184. DOI:10.1109/TCSII.2006.883220.
  • [6] Dearborn, S. 2005. Charging Lithium-ion batteries for maximum run times. Power Electronics Technology Magazine. Vol. 31, pp. 40-49.
  • [7] Yao, Y., Wang, Y., Liu, X.., Lin, F., Xu, D.G. 2018. A Novel Parameter Tuning Method for Double-sided LCL Compensated WPT System with Better Comprehensive Performance. IEEE Trans. Power Electron. Vol. 33, no. 10, pp. 8525–8536. DOI:10.1109/TPEL.2017.2778255.
  • [8] Zhang, W., Mi, C.C. 2016. Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. Vol. 65, no. 6, pp. 4768–4778. DOI:10.1109/TVT.2015.2454292.
  • [9] Hou, J., Chen, Q., Wong, S.C., Tse, C.K., Ruan, X. 2015. Analysis and control of series/series–parallel compensated resonant converter for contactless power transfer. IEEE Trans. Emerg. Sel. Top. Power Electron. Vol. 3, no. 1, pp. 124–136. DOI:10.1109/JESTPE.2014.2336811.
  • [10] Liu, C., Ge, S., Guo, Y., Li, H., Cai, G. 2016. Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis. IET Power Electron. Vol. 9, no. 11, pp. 2262–2270. DOI:10.1049/iet-pel.2015.0186.
  • [11] Wang, C. S., Covic, G.A., Stielau, O.H. 2004. Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE transactions on Power Electronics. Vol. 19, no. 4, pp. 995-1002. DOI:10.1109/TPEL.2004.830098.
  • [12] Li, S., Li, W., Deng, J., Nguyen, T.D., Mi, C.C. 2015. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technology. Vol. 64, no. 6, pp. 2261–2273. DOI:10.1109/TVT.2014.2347006.
  • [13] Kan, T., Nguyen, T. D., Wjite, J.C., Malhan, R.K., Mi, C.C. 2017. A new integration method for an electric vehicle wireless charging system using LCC compensation topology. IEEE Trans. Power Electronics. Vol. 32, no. 2, pp. 1638–1650. DOI:10.1109/TPEL.2016.2552060.
  • [14] Kan, T., Lu, F., Nguyen, T.D., Mercier, P.P., Mi, C.C. 2018. Integrated Coil Design for EV Wireless Charging Systems Using LCC Compensation Topology. IEEE Transactions on Power Electronics. Vol. 33, no. 11, pp. 9231-9241. DOI:10.1109/TPEL.2018.2794448.
  • [15] Vu, V.B., Doan, V.T., Pham, V.L., Choi, W.J. 2016. A new method to implement the constant current- constant voltage charge of the inductive power transfer system for electric vehicle applications. IEEE Transp. Electrification Conf. Expo., Asia-Pac., Busan, South Korea, 1-4 July, pp. 449–453.
  • [16] Li, W., Zhao, H., Deng, J., Li, S., Mi, C.C. 2016. Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Transactions on Vehicular Technology. Vol. 65, no: 6, pp. 4429-4439, DOI:10.1109/TVT.2015.2479938.
  • [17] Zhu, Q., Wang, L., Guo, Y., Liao, C., Li, F. 2016. Applying LCC Compensation Network to Dynamic Wireless EV Charging System. IEEE Transactions on Industrial Electronics. Vol. 63 no. 10, pp. 6557-6567, DOI:10.1109/TIE.2016.2529561.
  • [18] Wang, Y., Yao, Y., Liu, X., Xu, D. 2017. S/CLC compensation topology analysis and circular coil design for wireless power transfer. IEEE Trans. Transp. Electrific. Vol. 3, no. 2, pp. 496–507, DOI: 10.1109/TTE.2017.2651067.
  • [19] Wang, Y., Yao, Y., Liu, X., Xu, D. G., Cai, L. 2018. An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. Vol. 33, no. 3, pp. 2007–2025, DOI:10.1109/TPEL.2017.2698002.
  • [20] Aditya, K., Sood, V. K., Williamson, S.S. 2017. Magnetic characterization of unsymmetrical coil pairs using Archimedean spirals for wider misalignment tolerance in IPT systems. IEEE transactions on transportation electrification. Vol. 3, no. 2, pp. 454-463, DOI:10.1109/TTE.2017.2673847.
  • [21] Ahmad, A., Alam, M.S., Chabaan, R. 2018. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans. Transport. Electrific. Vol. 4, no. 1, pp. 38–63, DOI:10.1109/TTE.2017.2771619.
  • [22] Badstuebner, U., Biela, J., Kolar, J.W. 2010. Design of an 99%-efficient, 5kW, phase-shift PWM DC–DC converter for telecom applications. IEEE Appl. Power Electron. Conf., 21-25 February, pp. 773–780. DOI:10.1109/APEC.2010.5433582.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sevilay Çetin 0000-0002-9747-4821

Veli Yenil 0000-0002-0257-5305

Publication Date May 24, 2021
Published in Issue Year 2021 Volume: 23 Issue: 68

Cite

APA Çetin, S., & Yenil, V. (2021). Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(68), 459-468. https://doi.org/10.21205/deufmd.2021236809
AMA Çetin S, Yenil V. Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications. DEUFMD. May 2021;23(68):459-468. doi:10.21205/deufmd.2021236809
Chicago Çetin, Sevilay, and Veli Yenil. “Design of A Wireless Power Transfer Converter With LC/S Compensation for Electrical Vehicle Battery Charge Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 68 (May 2021): 459-68. https://doi.org/10.21205/deufmd.2021236809.
EndNote Çetin S, Yenil V (May 1, 2021) Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 68 459–468.
IEEE S. Çetin and V. Yenil, “Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications”, DEUFMD, vol. 23, no. 68, pp. 459–468, 2021, doi: 10.21205/deufmd.2021236809.
ISNAD Çetin, Sevilay - Yenil, Veli. “Design of A Wireless Power Transfer Converter With LC/S Compensation for Electrical Vehicle Battery Charge Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/68 (May 2021), 459-468. https://doi.org/10.21205/deufmd.2021236809.
JAMA Çetin S, Yenil V. Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications. DEUFMD. 2021;23:459–468.
MLA Çetin, Sevilay and Veli Yenil. “Design of A Wireless Power Transfer Converter With LC/S Compensation for Electrical Vehicle Battery Charge Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 68, 2021, pp. 459-68, doi:10.21205/deufmd.2021236809.
Vancouver Çetin S, Yenil V. Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications. DEUFMD. 2021;23(68):459-68.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.