Research Article
BibTex RIS Cite

Dokuma Kumaşların Deformasyon ve Geri Dönüş Özelliklerinin Yeni Bir Cihaz Kullanılarak Belirlenmesi

Year 2024, Volume: 26 Issue: 76, 90 - 97, 23.01.2024
https://doi.org/10.21205/deufmd.2024267611

Abstract

Kumaşların deformasyon ve geri dönüş özellikleri, konfor ve şekil alabilirliğin değerlendirilmesi esnasında dikkate alınması gereken önemli faktörlerdir. Bu çalışmada, pamuk ve karışımlarından elde edilmiş dokuz adet dokuma kumaşın deformasyon (D), elastisite (E), plastisite (P) ve histeresiz (H) özellikleri Tactile Sensation Analyzer (TSA) ile ölçülmüş ve elde edilen sonuçlar ile düşük-yük mekanik özellikler (sıkıştırılabilirlik, eğilme direnci, uzama yeteneği, kayma direnci), yapısal özellikler (birim alan kütlesi ve iplik sıklığı) ve şekil alabilirlik arasındaki ilişkiler incelenmiştir. Yüzey-dışı deformasyonun büyüklüğünü ifade eden parametrelerin (D ve E) eğilme, kayma ve uzama özellikleri ile kuvvetle ilişkili olduğu bulunmuştur. Kumaşların geri dönüş özelliklerinin - plastisite ve histeresiz - eğilme uzunluğu ve 5 N/m yük altında kaydedilen uzama yeteneği ile yüksek ilişkili olduğu gözlemlenmiştir. Ayrıca, P ve H parametrelerinin, birim alan kütlesi, iplik sıklığı ve tekrarlanan kayma deformasyonuna gösterilen direnç ile de orta derecede ilişkili olduğu kaydedilmiştir. Bu bulgularak ek olarak, pamuk karışımlı dokuma kumaşların şekil alabilirliğinin, TSA ile ölçülen deformasyon ve elastisite parametreleri ile anlamlı korelasyon gösterdiği saptanmıştır.

References

  • Hui, C-L., Ng, S-F. 2005. A New Approach for Prediction of Sewing Performance of Fabrics in Apparel Manufacturing Using Artificial Neural Networks, The Journal of the Textile Institute, Volume. 96, Issue. 6, pp. 401-405. DOI: 10.1533/joti.2005.0101
  • Giorgio Minazio, P. 1998. The Fabric Pressing Performance and its Role in Predicting the Appearance of Men’s Wool Suit Jackets, International Journal of Clothing Science and Technology, Volume. 10, Issue. 3/4, pp. 182-190. DOI: 10.1108/09556229810693609
  • Mousazadegan, F., Ezazshahabi, N., Latifi, M., Saharkhiz, S. 2013. Formability Analysis of Worsted Woven Fabrics Considering Fabric Direction, Fibers and Polymers, Volume. 14, Issue. 11, pp. 1933–1942. DOI: 10.1007/s12221-013-1933-2
  • Liao, X., Hu, J., Li, Y., Li, Q., Wu, X. 2011. A Review on Fabric Smoothness-Roughness Sensation Studies, Journal of Fiber Bioengineering and Informatics, Volume. 4, Issue. 2, pp. 105–114. DOI: 10.3993/jfbi06201101
  • Ciesielska-Wróbel, I. L., van Langenhove, L. 2012. The Hand of Textiles – Definitions, Achievements, Perspectives – A Review, Textile Research Journal, Volume. 82, Issue. 14, pp. 1457–1468. DOI: 10.1177/0040517512438126
  • Sztandera, L. M., Cardello, A. V., Winterhalter, C., Schutz, H. 2013. Identification of The Most Significant Comfort Factors for Textiles From Processing Mechanical, Handfeel, Fabric Construction, and Perceived Tactile Comfort Data, Textile Research Journal, Volume. 83, Issue. 1, pp. 34–43. DOI: 10.1177/0040517512438121
  • Mahar, T., Wang, H., Postle, R. 2013. A Review of Fabric Tactile Properties and Their Subjective Assessment for Next-To-Skin Knitted Fabrics, Journal of the Textile Institute, Volume. 104, Issue. 6, pp. 572–589. DOI: 10.1080/00405000.2013.774947
  • Mahar, T.J., Dhingra, R.C. Postle, R. 1989. Fabric Mechanical and Physical Properties Relevant to Clothing Manufacture - Part 1: Fabric Overfeed, Formability, Shear and Hygral Expansion During Tailoring, International Journal of Clothing Science and Technology, Volume. 1, Issue. 1, pp. 12-20. DOI: 10.1108/eb002941
  • Kawabata, S. 1980. The Standardization and Analysis of Hand Evaluation. 2nd edition. The Textile Machinery Society of Japan, Osaka, Japan.
  • Xue, Z., Zeng, X., Koehl, L. 2018. An Intelligent Method for The Evaluation and Prediction of Fabric Formability for Men’s Suits, Textile Research Journal, Volume. 88, Issue. 4, pp. 438-452. DOI: 10.1177/0040517516681956
  • Kim, HA., Kim, SJ. 2011. Seam Pucker and Formability of the Worsted Fabrics, Fibers and Polymers, Volume. 12, Issue. 8, pp. 1099-1105. DOI: 10.1007/s12221-011-1099-8
  • Fan, J., Ng, YN. 2001. Objective Evaluation of the Hand of Nonwoven Fusible Interlining, Textile Research Journal, Volume. 71, Issue. 8, pp. 661-666. DOI: 10.1177/004051750107100802
  • Tadesse, MG., Nagy, L., Nierstrasz, V., Loghin, C., Chen, Y., Wang, L. 2018. Low-Stress Mechanical Property Study of Various Functional Fabrics for Tactile Property Evaluation, Materials, Volume. 11, Issue. 12, pp. 2466. DOI: 10.3390ma11122466
  • Zhang, P., Liu, X., Wang, L., Wang, X. 2006. An experimental study on fabric softness evaluation. International Journal of Clothing Science and Technology, Volume. 18, Issue. 2, pp. 83-95. DOI: 10.1108/09556220610645748
  • Kim, J. O., Slaten, B. L. 1999. Objective Evaluation of Fabric Hand. Textile Research Journal, Volume. 69, Issue. 1, pp. 59-67. DOI: 10.1177/004051759906900110
  • El Mogahzy, Y.E., Kilinc, F. S., Hassan, M. 2005. Developments in Measurement and Evaluation of Fabric Hand, In Effect of Mechanical and Physical Properties on Fabric Hand, Woodhead Publishing, Cambridge, UK.
  • Strazdiene, E., Martisi[ubar]te, G., Gutauskas, M., Papreckiene, L. 2003. Textile Hand: A New Method for Textile Objective Evaluation, Journal of the Textile Institute, Volume. 94, Issue. 3–4, pp. 245–255. DOI: 10.1080/00405000308630613
  • Uren, N., Okur, A. 2019. Analysis and Improvement of Tactile Comfort and Low-Stress Mechanical Properties of Denim Fabrics, Textile Research Journal, Volume. 89, Issue. 23–24, pp. 4842-4857. DOI: 10.1177/0040517519840634
  • Hu, J. Y., Li, Y. I., Yeung, K. W. 2006. Mechanical Tactile Properties, In Clothing Biosensory Engineering, Woodhead Publishing, Boca Raton, FL, USA. DOI: 10.1533/9781845691462.261
  • El Abed, B., Msahli, S., Bel Hadj Salah, H., Sakli, F. 2011. Study of Woven Fabric Shear Behaviour, Journal of the Textile Institute, Volume. 102, Issue. 4, pp. 322-331. DOI: 10.1080/00405001003771226
  • Uren, N., Oner, E., Okur, A. 2016. A Novel Approach for Precise Determination of In-Plane Shear Behavior of Woven Fabrics, Textile Research Journal, Volume. 87, Issue. 11, pp. 1335–1348. DOI: 10.1177/0040517516652346
  • Hoefer, D., Handel, M., Müller, K.M., Hammer, T.R. 2016. Electroencephalographic Study Showing That Tactile Stimulation by Fabrics of Different Qualities Elicit Graded Event‐Related Potentials. Skin Research and Technology, Volume. 22, Issue. 4, pp. 470-478. DOI: 10.1111/srt.12288
  • Wang, Y., De Assis, T., Zambrano, F., Pal, L., Venditti, R. A., Dasmohapatra, S., Pawlak, J., Gonzalez, R. 2019. Relationship Between Human Perception of Softness and Instrument Measurements. BioResources, Volume. 14, Issue. 1, pp. 780-795.
  • Wang, Y., Venditti, R.A., Gonzalez, R., Pawlak, J.J. 2020. Sheet Structural and Mechanical Properties and Their Relationship to Tissue Softness. Progress in Paper Physics Seminar, September 1-3, Jyvaskyl, Finland, pp. 257-262.
  • Kim, H.J., Youn, S., Choi, J., Kim, H., Shim, M., Yun, C. 2021. Indexing Surface Smoothness and Fiber Softness by Sound Frequency Analysis for Textile Clustering and Classification. Textile Research Journal, Volume. 91, Issue. 1-2, pp. 200-218. DOI: 10.1177/0040517520935211
  • Ezazshahabi, N., Mousazadegan, F., Saharkhiz, S., Latifi, M. 2015. Determining Formability Function of Worsted Woven Fabrics in Terms of Fabric Direction, Journal of Engineered Fibers and Fabrics, Volume. 10, Issue. 2, pp. 1-10. DOI: 10.1177/155892501501000201
  • Lindberg, J., Waesterberg, L., Svenson, R. 1960. Wool Fabrics as Garment Construction Materials, Journal of the Textile Institute Transactions, Volume. 51, Issue. 12, pp. T1475-T1493. DOI: 10.1080/19447026008662578

Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument

Year 2024, Volume: 26 Issue: 76, 90 - 97, 23.01.2024
https://doi.org/10.21205/deufmd.2024267611

Abstract

Deformation and recovery characteristics of fabrics are important factors to be considered when evaluating comfort and formability. In this study, deformation (D), elasticity (E), plasticity (P) and hysteresis (H) properties of nine woven fabrics made of cotton and its blends were measured by Tactile Sensation Analyzer (TSA), and the relations between obtained results and low-stress mechanical properties (compressibility, bending rigidity, extensibility, shear resistance), structural properties (mass per unit area, thread count) and formability were investigated. Parameters which indicate the magnitude of out-of-plane deformation (D and E) were found out to be strongly related to bending, shear and extension properties. Recovery characteristics of fabrics - plasticity and hysteresis - were observed to be highly related to bending length and extensibility recorded under 5 N/m load. Moreover, parameters P and H were noted to be moderatly related to mass per unit area, thread count and resistance to repeated shear deformation. In addition to these findings, formability of cotton blended woven fabrics was detected to be significantly corelated with deformation and elasticity parameters measured by TSA.

References

  • Hui, C-L., Ng, S-F. 2005. A New Approach for Prediction of Sewing Performance of Fabrics in Apparel Manufacturing Using Artificial Neural Networks, The Journal of the Textile Institute, Volume. 96, Issue. 6, pp. 401-405. DOI: 10.1533/joti.2005.0101
  • Giorgio Minazio, P. 1998. The Fabric Pressing Performance and its Role in Predicting the Appearance of Men’s Wool Suit Jackets, International Journal of Clothing Science and Technology, Volume. 10, Issue. 3/4, pp. 182-190. DOI: 10.1108/09556229810693609
  • Mousazadegan, F., Ezazshahabi, N., Latifi, M., Saharkhiz, S. 2013. Formability Analysis of Worsted Woven Fabrics Considering Fabric Direction, Fibers and Polymers, Volume. 14, Issue. 11, pp. 1933–1942. DOI: 10.1007/s12221-013-1933-2
  • Liao, X., Hu, J., Li, Y., Li, Q., Wu, X. 2011. A Review on Fabric Smoothness-Roughness Sensation Studies, Journal of Fiber Bioengineering and Informatics, Volume. 4, Issue. 2, pp. 105–114. DOI: 10.3993/jfbi06201101
  • Ciesielska-Wróbel, I. L., van Langenhove, L. 2012. The Hand of Textiles – Definitions, Achievements, Perspectives – A Review, Textile Research Journal, Volume. 82, Issue. 14, pp. 1457–1468. DOI: 10.1177/0040517512438126
  • Sztandera, L. M., Cardello, A. V., Winterhalter, C., Schutz, H. 2013. Identification of The Most Significant Comfort Factors for Textiles From Processing Mechanical, Handfeel, Fabric Construction, and Perceived Tactile Comfort Data, Textile Research Journal, Volume. 83, Issue. 1, pp. 34–43. DOI: 10.1177/0040517512438121
  • Mahar, T., Wang, H., Postle, R. 2013. A Review of Fabric Tactile Properties and Their Subjective Assessment for Next-To-Skin Knitted Fabrics, Journal of the Textile Institute, Volume. 104, Issue. 6, pp. 572–589. DOI: 10.1080/00405000.2013.774947
  • Mahar, T.J., Dhingra, R.C. Postle, R. 1989. Fabric Mechanical and Physical Properties Relevant to Clothing Manufacture - Part 1: Fabric Overfeed, Formability, Shear and Hygral Expansion During Tailoring, International Journal of Clothing Science and Technology, Volume. 1, Issue. 1, pp. 12-20. DOI: 10.1108/eb002941
  • Kawabata, S. 1980. The Standardization and Analysis of Hand Evaluation. 2nd edition. The Textile Machinery Society of Japan, Osaka, Japan.
  • Xue, Z., Zeng, X., Koehl, L. 2018. An Intelligent Method for The Evaluation and Prediction of Fabric Formability for Men’s Suits, Textile Research Journal, Volume. 88, Issue. 4, pp. 438-452. DOI: 10.1177/0040517516681956
  • Kim, HA., Kim, SJ. 2011. Seam Pucker and Formability of the Worsted Fabrics, Fibers and Polymers, Volume. 12, Issue. 8, pp. 1099-1105. DOI: 10.1007/s12221-011-1099-8
  • Fan, J., Ng, YN. 2001. Objective Evaluation of the Hand of Nonwoven Fusible Interlining, Textile Research Journal, Volume. 71, Issue. 8, pp. 661-666. DOI: 10.1177/004051750107100802
  • Tadesse, MG., Nagy, L., Nierstrasz, V., Loghin, C., Chen, Y., Wang, L. 2018. Low-Stress Mechanical Property Study of Various Functional Fabrics for Tactile Property Evaluation, Materials, Volume. 11, Issue. 12, pp. 2466. DOI: 10.3390ma11122466
  • Zhang, P., Liu, X., Wang, L., Wang, X. 2006. An experimental study on fabric softness evaluation. International Journal of Clothing Science and Technology, Volume. 18, Issue. 2, pp. 83-95. DOI: 10.1108/09556220610645748
  • Kim, J. O., Slaten, B. L. 1999. Objective Evaluation of Fabric Hand. Textile Research Journal, Volume. 69, Issue. 1, pp. 59-67. DOI: 10.1177/004051759906900110
  • El Mogahzy, Y.E., Kilinc, F. S., Hassan, M. 2005. Developments in Measurement and Evaluation of Fabric Hand, In Effect of Mechanical and Physical Properties on Fabric Hand, Woodhead Publishing, Cambridge, UK.
  • Strazdiene, E., Martisi[ubar]te, G., Gutauskas, M., Papreckiene, L. 2003. Textile Hand: A New Method for Textile Objective Evaluation, Journal of the Textile Institute, Volume. 94, Issue. 3–4, pp. 245–255. DOI: 10.1080/00405000308630613
  • Uren, N., Okur, A. 2019. Analysis and Improvement of Tactile Comfort and Low-Stress Mechanical Properties of Denim Fabrics, Textile Research Journal, Volume. 89, Issue. 23–24, pp. 4842-4857. DOI: 10.1177/0040517519840634
  • Hu, J. Y., Li, Y. I., Yeung, K. W. 2006. Mechanical Tactile Properties, In Clothing Biosensory Engineering, Woodhead Publishing, Boca Raton, FL, USA. DOI: 10.1533/9781845691462.261
  • El Abed, B., Msahli, S., Bel Hadj Salah, H., Sakli, F. 2011. Study of Woven Fabric Shear Behaviour, Journal of the Textile Institute, Volume. 102, Issue. 4, pp. 322-331. DOI: 10.1080/00405001003771226
  • Uren, N., Oner, E., Okur, A. 2016. A Novel Approach for Precise Determination of In-Plane Shear Behavior of Woven Fabrics, Textile Research Journal, Volume. 87, Issue. 11, pp. 1335–1348. DOI: 10.1177/0040517516652346
  • Hoefer, D., Handel, M., Müller, K.M., Hammer, T.R. 2016. Electroencephalographic Study Showing That Tactile Stimulation by Fabrics of Different Qualities Elicit Graded Event‐Related Potentials. Skin Research and Technology, Volume. 22, Issue. 4, pp. 470-478. DOI: 10.1111/srt.12288
  • Wang, Y., De Assis, T., Zambrano, F., Pal, L., Venditti, R. A., Dasmohapatra, S., Pawlak, J., Gonzalez, R. 2019. Relationship Between Human Perception of Softness and Instrument Measurements. BioResources, Volume. 14, Issue. 1, pp. 780-795.
  • Wang, Y., Venditti, R.A., Gonzalez, R., Pawlak, J.J. 2020. Sheet Structural and Mechanical Properties and Their Relationship to Tissue Softness. Progress in Paper Physics Seminar, September 1-3, Jyvaskyl, Finland, pp. 257-262.
  • Kim, H.J., Youn, S., Choi, J., Kim, H., Shim, M., Yun, C. 2021. Indexing Surface Smoothness and Fiber Softness by Sound Frequency Analysis for Textile Clustering and Classification. Textile Research Journal, Volume. 91, Issue. 1-2, pp. 200-218. DOI: 10.1177/0040517520935211
  • Ezazshahabi, N., Mousazadegan, F., Saharkhiz, S., Latifi, M. 2015. Determining Formability Function of Worsted Woven Fabrics in Terms of Fabric Direction, Journal of Engineered Fibers and Fabrics, Volume. 10, Issue. 2, pp. 1-10. DOI: 10.1177/155892501501000201
  • Lindberg, J., Waesterberg, L., Svenson, R. 1960. Wool Fabrics as Garment Construction Materials, Journal of the Textile Institute Transactions, Volume. 51, Issue. 12, pp. T1475-T1493. DOI: 10.1080/19447026008662578
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering, Fabric Technologies, Textile Quality Control, Textile Technology
Journal Section Research Article
Authors

Nazlı Üren 0000-0003-4487-7800

Early Pub Date January 22, 2024
Publication Date January 23, 2024
Published in Issue Year 2024 Volume: 26 Issue: 76

Cite

APA Üren, N. (2024). Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(76), 90-97. https://doi.org/10.21205/deufmd.2024267611
AMA Üren N. Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument. DEUFMD. January 2024;26(76):90-97. doi:10.21205/deufmd.2024267611
Chicago Üren, Nazlı. “Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 76 (January 2024): 90-97. https://doi.org/10.21205/deufmd.2024267611.
EndNote Üren N (January 1, 2024) Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 76 90–97.
IEEE N. Üren, “Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument”, DEUFMD, vol. 26, no. 76, pp. 90–97, 2024, doi: 10.21205/deufmd.2024267611.
ISNAD Üren, Nazlı. “Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/76 (January 2024), 90-97. https://doi.org/10.21205/deufmd.2024267611.
JAMA Üren N. Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument. DEUFMD. 2024;26:90–97.
MLA Üren, Nazlı. “Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 76, 2024, pp. 90-97, doi:10.21205/deufmd.2024267611.
Vancouver Üren N. Determining Deformation and Recovery Characteristics of Woven Fabrics Using A Novel Instrument. DEUFMD. 2024;26(76):90-7.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.