Research Article
BibTex RIS Cite

İnsansız Hava Aracı ve Yer Kontrol İstasyonu Arasında Güvenli İletişim

Year 2024, Volume: 26 Issue: 77, 350 - 355, 27.05.2024
https://doi.org/10.21205/deufmd.2024267720

Abstract

Bu makalenin temel amacı, bir tür insansız hava aracı (İHA) olan dronlarla (uçangöz) güvenli iletişim sağlayarak veri aktarımı sağlamaktır. Çalışmamızda, dronun donanım ve yazılımına müdahale etmeden (birçok dron donanım ve yazılımına müdahele edilmesine izin vermez) veri aktarımında bir güvenlik katmanı eklenmiştir. Çalışmamızda bu katmanı eklemek için kablosuz ağ modülüne sahip ve maliyeti düşük olan Wemos D1 Mini kullanılmıştır. Çalışma kapsamında Wi-Fi modülleri özelleştirilmiş ve Erişim Noktası ve İstemci formlarına dönüştürülmüştür. Özelleşmiş modüllerine gönderilen mesaj, bu çalışma için tasarlanan ve geliştirilen Mobil Uygulama aracılığıyla sağlanmıştır. Böylece, komutlar kablosuz veri iletim ortamında şifrelenmiş bir biçimde iletilmiştir. Sonuç olarak, bu konsept, Wi-Fi iletişime sahip her türlü dron için özelleştirilebilen bir prototip haline gelmiştir.

References

  • Urien, P. 2018. An Innovative Four-Quarter IoT Secure Architecture Based on Secure Element. 14th Int. Wireless Communications & Mobile Computing Conf. (IWCMC), 25-29 June, Limassol, 1074-1080, DOI: 10.1109/IWCMC.2018.8450435.
  • Kubilay, İ. A. and Kubilay, H. 2018. Drone Design for Abiding Legal Guidelines. International Conference on Science and Technology, 5-9 September, Prizren, 482-488.
  • Rodday, N. M., Schmidt, R. D. O. and Pras, A. 2016. Exploring security vulnerabilities of unmanned aerial vehicles. NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, 25-29 April, Istanbul, 993-994, DOI: 10.1109/NOMS.2016.7502939.
  • Verup, M. and Olin, M. 2016. Security models and exploitations in theory and practice for unmanned aerial vehicles. http://www2.compute.dtu.dk/pubdb/edoc/ imm7054.pdp (Accessed on: 07.03.2023).
  • Hartmann, K. and Giles, K. 2016. UAV Exploitation: A New Domain for Cyber Power. 8th Int. Conf. on Cyber Conflict, 31 May-03 June, Tallinn, 205-221, DOI: 10.1109/CYCON.2016.7529436.
  • Bian, J., Seker, R. and Xie, M. 2013. A secure communication framework for large-scale unmanned aircraft systems. 2013 Integrated Communications, Navigation and Surveillance Conference, 22-25 April, Herndon, 1-12, DOI: 10.1109/ICNSurv.2013.6548542.
  • Bian, J., Seker, R., Ramaswamy, S. and Yilmazer, N. 2009. Container communities: Anti-tampering Wireless Sensor Network for global cargo security. 17th Mediterranean Conference on Control and Automation, 24-26 June, Thessaloniki, 464-468, DOI: 10.1109/MED.2009.5164585.
  • Mitchell, R. and Chen, I. R. 2014. Adaptive Intrusion Detection of Malicious Unmanned Air Vehicles Using Behavior Rule Specifications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, no. 5, pp. 593-604, DOI: 10.1109/TSMC.2013.2265083.
  • Gupta, L., Jain, R. and Vaszkun, G. 2016. Survey of Important Issues in UAV Communication Networks, IEEE Communications Surveys & Tutorials, Vol. 18, no. 2, pp. 1123-1152. DOI: 10.1109/COMST.2015.2495297.
  • Deva Sarma, H. K. and Kar, A. 2006. Security Threats in Wireless Sensor Networks. 40th Annual 2006 Int. Carnahan Conf. on Security Technology, 16-19 October, Lexington, 243-251, DOI: 10.1109/CCST.2006.313457.
  • Samid, G. 2016. Drone Targeted Cryptography, IACR Cyrptol. ePrint Arch., pp. 499-506.
  • He, D., Chan, S. and Guizani, M. 2017. Drone-Assisted Public Safety Networks: The Security Aspect, IEEE Communications Magazine, Vol. 55, no. 8, pp. 218-223, DOI: 10.1109/MCOM.2017.1600799CM.
  • Singh, M., Rajan, M. A., Shivraj, V. L. and Balamuralidhar, P. 2015. Secure MQTT for Internet of Things (iot). Fifth Int. Conf. on Communication Systems and Network Technologies, 4-6 April, Gwalior, 746–751.
  • Giernacki, W., Rao, J., Sladic, S., Bondyra, A., Retinger, M. and Espinoza-Fraire, T. DJI Tello Quadrotor as a Platform for Research and Education in Mobile Robotics and Control Engineering. 2022 Int. Conf. on Unmanned Aircraft Systems (ICUAS), 21-24 June, Dubrovnik, 735-744, DOI: 10.1109/ICUAS54217.2022.9836168.
  • Giernacki, W., Kozierski, P., Michalski, J., Retinger, M., Madonski, R. and Campoy, P. 2020. Bebop 2 Quadrotor as a Platform for Research and Education in Robotics and Control Engineering. 2020 Int. Conf. on Unmanned Aircraft Systems (ICUAS), 1-4 September, Athens, 1733-1741, DOI: 10.1109/ICUAS48674.2020.9213872.
  • Mamchenko, M. V. 2021. Analysis of Control Channel Cybersecurity of the Consumer-Grade UAV by the Example of DJI Tello, Journal of Physics: Conference Series, Vol. 1864, DOI: 10.1088/1742-6596/1864/1/012127.
  • Radu, D., Cretu, A., Avram, C., Astilean, A. and Parrein, B. 2018. Video Content Transmission in a Public Safety System Model based on Flying Ad-Hoc Networks. 2018 IEEE Int. Conf. on Automation, Quality and Testing, Robotics (AQTR), 24-26 May, Cluj-Napoca, 1-4, DOI: 10.1109/AQTR.2018.8402713.
  • DJI Company 2023. Tello SDK 2.0. https://dlcdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf (Accessed on: 07.03.2023).
  • Valente, J., Cardenas, A. A. 2017. Understanding Security Threats in Consumer Drones Through the Lens of the Discovery Quadcopter Family. 2017 Workshop on Internet of Things Security and Privacy, 30 October-3 November, Dallas, 31-36, DOI: 10.1145/3139937.3139943.

Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station

Year 2024, Volume: 26 Issue: 77, 350 - 355, 27.05.2024
https://doi.org/10.21205/deufmd.2024267720

Abstract

The main purpose of this article is to provide data transfer by providing secure communication with drones, which is a kind of unmanned aerial vehicle (UAV). In our study, without intervening hardware and software of the drone (most of the drones do not allow interference with their hardware and software), a security layer is added for data communication. In our study for adding this layer, Wemos D1 Mini, having wireless network module and cheap, was used. In the scope of the study, Wi-Fi modules are customized and converted into Access Point and Client forms. The message sent to the specialized modules is provided through the Mobile Application, which has been designed and implemented for this study. Thus, commands were transmitted in an encrypted form in the wireless data transmission environment. As a result, this concept has become a prototype that can be customized according to any specific drone having Wi-Fi communication.

References

  • Urien, P. 2018. An Innovative Four-Quarter IoT Secure Architecture Based on Secure Element. 14th Int. Wireless Communications & Mobile Computing Conf. (IWCMC), 25-29 June, Limassol, 1074-1080, DOI: 10.1109/IWCMC.2018.8450435.
  • Kubilay, İ. A. and Kubilay, H. 2018. Drone Design for Abiding Legal Guidelines. International Conference on Science and Technology, 5-9 September, Prizren, 482-488.
  • Rodday, N. M., Schmidt, R. D. O. and Pras, A. 2016. Exploring security vulnerabilities of unmanned aerial vehicles. NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, 25-29 April, Istanbul, 993-994, DOI: 10.1109/NOMS.2016.7502939.
  • Verup, M. and Olin, M. 2016. Security models and exploitations in theory and practice for unmanned aerial vehicles. http://www2.compute.dtu.dk/pubdb/edoc/ imm7054.pdp (Accessed on: 07.03.2023).
  • Hartmann, K. and Giles, K. 2016. UAV Exploitation: A New Domain for Cyber Power. 8th Int. Conf. on Cyber Conflict, 31 May-03 June, Tallinn, 205-221, DOI: 10.1109/CYCON.2016.7529436.
  • Bian, J., Seker, R. and Xie, M. 2013. A secure communication framework for large-scale unmanned aircraft systems. 2013 Integrated Communications, Navigation and Surveillance Conference, 22-25 April, Herndon, 1-12, DOI: 10.1109/ICNSurv.2013.6548542.
  • Bian, J., Seker, R., Ramaswamy, S. and Yilmazer, N. 2009. Container communities: Anti-tampering Wireless Sensor Network for global cargo security. 17th Mediterranean Conference on Control and Automation, 24-26 June, Thessaloniki, 464-468, DOI: 10.1109/MED.2009.5164585.
  • Mitchell, R. and Chen, I. R. 2014. Adaptive Intrusion Detection of Malicious Unmanned Air Vehicles Using Behavior Rule Specifications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, no. 5, pp. 593-604, DOI: 10.1109/TSMC.2013.2265083.
  • Gupta, L., Jain, R. and Vaszkun, G. 2016. Survey of Important Issues in UAV Communication Networks, IEEE Communications Surveys & Tutorials, Vol. 18, no. 2, pp. 1123-1152. DOI: 10.1109/COMST.2015.2495297.
  • Deva Sarma, H. K. and Kar, A. 2006. Security Threats in Wireless Sensor Networks. 40th Annual 2006 Int. Carnahan Conf. on Security Technology, 16-19 October, Lexington, 243-251, DOI: 10.1109/CCST.2006.313457.
  • Samid, G. 2016. Drone Targeted Cryptography, IACR Cyrptol. ePrint Arch., pp. 499-506.
  • He, D., Chan, S. and Guizani, M. 2017. Drone-Assisted Public Safety Networks: The Security Aspect, IEEE Communications Magazine, Vol. 55, no. 8, pp. 218-223, DOI: 10.1109/MCOM.2017.1600799CM.
  • Singh, M., Rajan, M. A., Shivraj, V. L. and Balamuralidhar, P. 2015. Secure MQTT for Internet of Things (iot). Fifth Int. Conf. on Communication Systems and Network Technologies, 4-6 April, Gwalior, 746–751.
  • Giernacki, W., Rao, J., Sladic, S., Bondyra, A., Retinger, M. and Espinoza-Fraire, T. DJI Tello Quadrotor as a Platform for Research and Education in Mobile Robotics and Control Engineering. 2022 Int. Conf. on Unmanned Aircraft Systems (ICUAS), 21-24 June, Dubrovnik, 735-744, DOI: 10.1109/ICUAS54217.2022.9836168.
  • Giernacki, W., Kozierski, P., Michalski, J., Retinger, M., Madonski, R. and Campoy, P. 2020. Bebop 2 Quadrotor as a Platform for Research and Education in Robotics and Control Engineering. 2020 Int. Conf. on Unmanned Aircraft Systems (ICUAS), 1-4 September, Athens, 1733-1741, DOI: 10.1109/ICUAS48674.2020.9213872.
  • Mamchenko, M. V. 2021. Analysis of Control Channel Cybersecurity of the Consumer-Grade UAV by the Example of DJI Tello, Journal of Physics: Conference Series, Vol. 1864, DOI: 10.1088/1742-6596/1864/1/012127.
  • Radu, D., Cretu, A., Avram, C., Astilean, A. and Parrein, B. 2018. Video Content Transmission in a Public Safety System Model based on Flying Ad-Hoc Networks. 2018 IEEE Int. Conf. on Automation, Quality and Testing, Robotics (AQTR), 24-26 May, Cluj-Napoca, 1-4, DOI: 10.1109/AQTR.2018.8402713.
  • DJI Company 2023. Tello SDK 2.0. https://dlcdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf (Accessed on: 07.03.2023).
  • Valente, J., Cardenas, A. A. 2017. Understanding Security Threats in Consumer Drones Through the Lens of the Discovery Quadcopter Family. 2017 Workshop on Internet of Things Security and Privacy, 30 October-3 November, Dallas, 31-36, DOI: 10.1145/3139937.3139943.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pınar Savaştürk 0000-0003-0680-1717

İbrahim Atakan Kubilay 0000-0001-6344-1119

Gökhan Dalkılıç 0000-0002-0130-1716

Early Pub Date May 14, 2024
Publication Date May 27, 2024
Published in Issue Year 2024 Volume: 26 Issue: 77

Cite

APA Savaştürk, P., Kubilay, İ. A., & Dalkılıç, G. (2024). Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 350-355. https://doi.org/10.21205/deufmd.2024267720
AMA Savaştürk P, Kubilay İA, Dalkılıç G. Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station. DEUFMD. May 2024;26(77):350-355. doi:10.21205/deufmd.2024267720
Chicago Savaştürk, Pınar, İbrahim Atakan Kubilay, and Gökhan Dalkılıç. “Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 77 (May 2024): 350-55. https://doi.org/10.21205/deufmd.2024267720.
EndNote Savaştürk P, Kubilay İA, Dalkılıç G (May 1, 2024) Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 350–355.
IEEE P. Savaştürk, İ. A. Kubilay, and G. Dalkılıç, “Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station”, DEUFMD, vol. 26, no. 77, pp. 350–355, 2024, doi: 10.21205/deufmd.2024267720.
ISNAD Savaştürk, Pınar et al. “Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (May 2024), 350-355. https://doi.org/10.21205/deufmd.2024267720.
JAMA Savaştürk P, Kubilay İA, Dalkılıç G. Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station. DEUFMD. 2024;26:350–355.
MLA Savaştürk, Pınar et al. “Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 77, 2024, pp. 350-5, doi:10.21205/deufmd.2024267720.
Vancouver Savaştürk P, Kubilay İA, Dalkılıç G. Secure Communication Between Unmanned Aerial Vehicle and Ground Control Station. DEUFMD. 2024;26(77):350-5.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.