Research Article
BibTex RIS Cite

Farklı Karıştırma ve Sıkıştırma Sıcaklıklarının Poroz Asfalt Kaplamaların Parça Kaybına Etkisi

Year 2025, Volume: 27 Issue: 79, 80 - 85, 23.01.2025
https://doi.org/10.21205/deufmd.2025277911

Abstract

Poroz asfalt, sıkıştırma sonrasında geleneksel asfalt kaplamalara göre daha yüksek hava boşlukları içeren, yağış sularının kaplama yüzeyinden alt katmanlara sızmasına izin veren, açık gradasyonlu agregaya sahip bir kaplama türüdür. Aşınma tabakasındaki parçacık kaybı, kaplama performansını etkileyen yüzey bozulmasına neden olur. Ayrıca poroz asfaltın gözenekli yapısı, kaplamayı sürekli olarak hava ve suyun etkisi altında bırakmakta, bu da oksidasyon hızını hızlandırmakta ve kaplamanın yüzey özelliklerini etkilemektedir. Ayrıca, bu faktörler bitüm-agrega bağ mukavemetini etkileyebilir ve asfalt film içinde kohezyonun bozulmasına neden olarak bitümün agregadan soyulmasına neden olabilir. Poroz asfaltın performansı, özellikle mukavemet ve dayanıklılık, sıkıştırma sıcaklığından büyük ölçüde etkilenir. Daha yüksek sıkıştırma sıcaklıkları karışımın hava boşluklarını azaltabilir, dolayısıyla gerekli karışım yoğunlukları elde edilemeyebilir. Bu çalışmada, modifiye edilmemiş bitüm ve SBS®, Elvaloy®, Sasobit® modifiyeli bitüm kullanılarak 3 farklı sıkıştırma sıcaklığında hazırlanan gözenekli asfalt numunelerinin parçacık kaybı araştırılmış ve optimum karıştırma ve sıkıştırma sıcaklığı belirlenmiştir.

References

  • [1] Kamar, F.H.A., Sarif, J.N., 2009. Proc. of 13th Conf. of the Road Eng. Ass. of Asia and Australasia (REAAA), p. 9-07.
  • [2] Ma, X., Zhou, P., Jiang, J., Hu, X., 2020. High-temperature failure of porous asphalt mixture under wheel loading based on 2D air void structure analysis. Construction and Building Materials, Vol. 252, p. 119051. DOI: 10.1016/j.conbuildmat.2020.119051.
  • [3] Kandhal, P.S., Mallick, R.B., 1998. Open graded friction course: state of the practice. Washington, DC, USA: Transportation Research Board, National Research Council.
  • [4] Huber, G., 2000. Performance survey on open-graded friction course mixes. Transportation Research Board, Vol. 284.
  • [5] Herrington, P.R., Reilly, S., Cook, S., 2005. Porous asphalt durability test. Wellington: Transfund New Zealand.
  • [6] Kandhal, P.S., Mallick, R.B., 1999. Design of new-generation open-graded friction courses. NCAT Report, No. 99-3.
  • [7] Luxman, N.N., Hassan, N.A., Jaya, R.P., Warid, M.M., Azahar, N.M., Mahmud, M.Z.H., Ismail, S., 2019. Effect of compaction temperature on porous asphalt performance. IOP Conference Series: Earth and Environmental Science, Vol. 244(1), p. 012011. DOI: 10.1088/1755-1315/244/1/012011.
  • [8] Capitão, S.D., Picado-Santos, L.G., Martinho, F., 2012. Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, Vol. 36, pp. 1016-1024. DOI: 10.1016/j.conbuildmat.2012.06.038.
  • [9] Wang, X., Ren, J., Hu, X., Gu, X., Li, N., 2021. Determining optimum number of gyrations for porous asphalt mixtures using superpave gyratory compactor. KSCE Journal of Civil Engineering, Vol. 25(6), pp. 2010-2019. DOI: 10.1007/s12205-021-1005-x.
  • [10] Khedoe, R.N., Woldekidan, M.F., van de Ven, M., van Emst, G., 2006. Possible use of C-Fix in Special Applications: Porous Asphalt. In Wegbouwkundige Werkdagen 2006, pp. 1-10.
  • [11] Poulikakos, L.D., Partl, M.N., 2003. A comparison of Swiss and Japanese porous asphalt through various mechanical tests.
  • [12] Masad, E., Scarpas, A., Rajagopal, K.R., Kassem, E., Koneru, S., Kasbergen, C., 2016. Finite element modelling of field compaction of hot mix asphalt. Part II: Applications. International Journal of Pavement Engineering, Vol. 17(1), pp. 24-38.
  • [13] Cheng, Z., Li, X., Yang, Q., Liang, N., Chen, L., Zheng, S., Wang, D., 2023. Study on Compaction Properties and Skeleton Structural Characteristics of Porous Asphalt Mixture. Sustainability, Vol. 15(18), p. 13911.
  • [14] McDaniel, R.S., Thornton, W.D., Dominguez, J.G., 2004. Field evaluation of porous asphalt pavement. SQDH Report No. 2003-4. Purdue University.
  • [15] Hassan, A., Mahmud, M., Adi, N., Rahmat, N., Hainin, M., Jaya, R.P., 2016. Effects of air voids content on the performance of porous asphalt mixture. Journal of Engineering and Applied Sciences, Vol. 11(20), pp. 11884-11887.
  • [16] Renken, P., 2000. Perspective on optimisation of porous asphalt surface course. In Proceedings of the 2nd Eurasphalt and Eurobitume Congress, Book 2-Session 3.
  • [17] Takahashi, S., Poulikakos, L.D., Partl, M.N., 2003. Evaluation of improved porous asphalt by various test methods. In Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, pp. 230-236.
  • [18] Tayfur, S., Ozen, H., Aksoy, A., 2007. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, Vol. 21(2), pp. 328-337. DOI: 10.1016/j.conbuildmat.2005.08.014.
  • [19] Harish, L., 2014. The Permeability and Indirect Tensile Strength Characteristics of Porous Asphalt Mixes. Vol. 5, pp. 62-67.
  • [20] Luxman, N.N., Hassan, N.A., Jaya, R.P., Warid, M.M., Azahar, N.M., Mahmud, M.Z.H., Ismail, S., 2019. Effect of compaction temperature on porous asphalt performance. IOP Conference Series: Earth and Environmental Science, Vol. 244(1), p. 012011. DOI: 10.1088/1755-1315/244/1/012011.
  • [21] Sengoz, B., Isikyakar, G., 2008. Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials, Vol. 150(2), pp. 424-432. DOI: 10.1016/j.jhazmat.2007.04.122.
  • [22] Topal, A., 2010. Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Processing Technology, Vol. 91(1), pp. 45-51. DOI: 10.1016/j.fuproc.2009.08.007.
  • [23] Almusawi, A., Sengoz, B., Topal, A., 2021. Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, Vol. 268, p. 121140. DOI: 10.1016/j.conbuildmat.2020.121140.
  • [24] Ozdemir, D.K., Topal, A., McNally, T., 2021. Relationship between microstructure and phase morphology of SBS modified bitumen with processing parameters studied using atomic force microscopy. Construction and Building Materials, Vol. 268, p. 121061. DOI: 10.1016/j.conbuildmat.2020.121061.
  • [25] Kaya, D., Topal, A., Gupta, J., McNally, T., 2020. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Construction and Building Materials, Vol. 235, p. 117450. DOI: 10.1016/j.conbuildmat.2019.117450.
  • [26] Oner, J., 2019. Rheological characteristics of bitumens prepared with process oil. Građevinar, Vol. 71(7), pp. 559-569. DOI: 10.14256/JCE.2587.2018.
  • [27] Topal, A., Sengoz, B., Kok, B.V., Yilmaz, M., Dokandari, P.A., Oner, J., Kaya, D., 2014. Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Construction and Building Materials, Vol. 57, pp. 38-44. DOI: 10.1016/j.conbuildmat.2014.01.093.
  • [28] Oner, J., Sengoz, B., 2018. Effect of polymers on rheological properties of waxy bitumens. Revista de la Construcción, Vol. 17(2), pp. 279-295. DOI: 10.7764/rdlc.17.2.279.
  • [29] Oner, J., Sengoz, B., Rija, S.F., Topal, A., 2017. Investigation of the rheological properties of elastomeric polymer-modified bitumen using warm-mix asphalt additives. Road Materials and Pavement Design, Vol. 18(5), pp. 1049-1066. DOI: 10.1080/14680629.2016.1206484.
  • [30] Almusawi, A., Sengoz, B., Topal, A., 2021. Investigation of mixing and compaction temperatures of modified hot asphalt and warm mix asphalt. Periodica Polytechnica Civil Engineering, Vol. 65(1), pp. 72-83.
  • [31] Almusawi, A., Sengoz, B., Topal, A., 2021. Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, Vol. 268, p. 121140. DOI: 10.1016/j.conbuildmat.2020.121140.

The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements

Year 2025, Volume: 27 Issue: 79, 80 - 85, 23.01.2025
https://doi.org/10.21205/deufmd.2025277911

Abstract

Porous asphalt (PA) is a type of pavement with an open-graded aggregate that contains higher air voids than the conventional asphalt pavements after compaction, which allows precipitation waters to infiltrate from the pavement surface to the lower layers. The particle loss in the wear layer causes surface deterioration, which affects pavement performance. In addition, the porosity nature of porous asphalt leaves the pavement under the effect of air and water continuously, which accelerates the oxidation rate and affects the surface properties of the pavement. Moreover, these factors can affect the bitumen-aggregate bond strength and cause cohesion degradation within the asphalt film, causing the bitumen to peel from aggregate. The performance of porous asphalt, particularly strength and durability, is greatly affected by compaction temperature. Higher compaction temperatures can reduce the air voids of the mix, so the required mix densities may not be achieved. In this study, the particle loss of porous asphalt samples prepared at 3 different compaction temperatures by using unmodified bitumen, SBS®, Elvaloy®, and Sasobit® modified bitumen was investigated and the optimum mixing and compaction temperature was determined.

References

  • [1] Kamar, F.H.A., Sarif, J.N., 2009. Proc. of 13th Conf. of the Road Eng. Ass. of Asia and Australasia (REAAA), p. 9-07.
  • [2] Ma, X., Zhou, P., Jiang, J., Hu, X., 2020. High-temperature failure of porous asphalt mixture under wheel loading based on 2D air void structure analysis. Construction and Building Materials, Vol. 252, p. 119051. DOI: 10.1016/j.conbuildmat.2020.119051.
  • [3] Kandhal, P.S., Mallick, R.B., 1998. Open graded friction course: state of the practice. Washington, DC, USA: Transportation Research Board, National Research Council.
  • [4] Huber, G., 2000. Performance survey on open-graded friction course mixes. Transportation Research Board, Vol. 284.
  • [5] Herrington, P.R., Reilly, S., Cook, S., 2005. Porous asphalt durability test. Wellington: Transfund New Zealand.
  • [6] Kandhal, P.S., Mallick, R.B., 1999. Design of new-generation open-graded friction courses. NCAT Report, No. 99-3.
  • [7] Luxman, N.N., Hassan, N.A., Jaya, R.P., Warid, M.M., Azahar, N.M., Mahmud, M.Z.H., Ismail, S., 2019. Effect of compaction temperature on porous asphalt performance. IOP Conference Series: Earth and Environmental Science, Vol. 244(1), p. 012011. DOI: 10.1088/1755-1315/244/1/012011.
  • [8] Capitão, S.D., Picado-Santos, L.G., Martinho, F., 2012. Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, Vol. 36, pp. 1016-1024. DOI: 10.1016/j.conbuildmat.2012.06.038.
  • [9] Wang, X., Ren, J., Hu, X., Gu, X., Li, N., 2021. Determining optimum number of gyrations for porous asphalt mixtures using superpave gyratory compactor. KSCE Journal of Civil Engineering, Vol. 25(6), pp. 2010-2019. DOI: 10.1007/s12205-021-1005-x.
  • [10] Khedoe, R.N., Woldekidan, M.F., van de Ven, M., van Emst, G., 2006. Possible use of C-Fix in Special Applications: Porous Asphalt. In Wegbouwkundige Werkdagen 2006, pp. 1-10.
  • [11] Poulikakos, L.D., Partl, M.N., 2003. A comparison of Swiss and Japanese porous asphalt through various mechanical tests.
  • [12] Masad, E., Scarpas, A., Rajagopal, K.R., Kassem, E., Koneru, S., Kasbergen, C., 2016. Finite element modelling of field compaction of hot mix asphalt. Part II: Applications. International Journal of Pavement Engineering, Vol. 17(1), pp. 24-38.
  • [13] Cheng, Z., Li, X., Yang, Q., Liang, N., Chen, L., Zheng, S., Wang, D., 2023. Study on Compaction Properties and Skeleton Structural Characteristics of Porous Asphalt Mixture. Sustainability, Vol. 15(18), p. 13911.
  • [14] McDaniel, R.S., Thornton, W.D., Dominguez, J.G., 2004. Field evaluation of porous asphalt pavement. SQDH Report No. 2003-4. Purdue University.
  • [15] Hassan, A., Mahmud, M., Adi, N., Rahmat, N., Hainin, M., Jaya, R.P., 2016. Effects of air voids content on the performance of porous asphalt mixture. Journal of Engineering and Applied Sciences, Vol. 11(20), pp. 11884-11887.
  • [16] Renken, P., 2000. Perspective on optimisation of porous asphalt surface course. In Proceedings of the 2nd Eurasphalt and Eurobitume Congress, Book 2-Session 3.
  • [17] Takahashi, S., Poulikakos, L.D., Partl, M.N., 2003. Evaluation of improved porous asphalt by various test methods. In Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, pp. 230-236.
  • [18] Tayfur, S., Ozen, H., Aksoy, A., 2007. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, Vol. 21(2), pp. 328-337. DOI: 10.1016/j.conbuildmat.2005.08.014.
  • [19] Harish, L., 2014. The Permeability and Indirect Tensile Strength Characteristics of Porous Asphalt Mixes. Vol. 5, pp. 62-67.
  • [20] Luxman, N.N., Hassan, N.A., Jaya, R.P., Warid, M.M., Azahar, N.M., Mahmud, M.Z.H., Ismail, S., 2019. Effect of compaction temperature on porous asphalt performance. IOP Conference Series: Earth and Environmental Science, Vol. 244(1), p. 012011. DOI: 10.1088/1755-1315/244/1/012011.
  • [21] Sengoz, B., Isikyakar, G., 2008. Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials, Vol. 150(2), pp. 424-432. DOI: 10.1016/j.jhazmat.2007.04.122.
  • [22] Topal, A., 2010. Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Processing Technology, Vol. 91(1), pp. 45-51. DOI: 10.1016/j.fuproc.2009.08.007.
  • [23] Almusawi, A., Sengoz, B., Topal, A., 2021. Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, Vol. 268, p. 121140. DOI: 10.1016/j.conbuildmat.2020.121140.
  • [24] Ozdemir, D.K., Topal, A., McNally, T., 2021. Relationship between microstructure and phase morphology of SBS modified bitumen with processing parameters studied using atomic force microscopy. Construction and Building Materials, Vol. 268, p. 121061. DOI: 10.1016/j.conbuildmat.2020.121061.
  • [25] Kaya, D., Topal, A., Gupta, J., McNally, T., 2020. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Construction and Building Materials, Vol. 235, p. 117450. DOI: 10.1016/j.conbuildmat.2019.117450.
  • [26] Oner, J., 2019. Rheological characteristics of bitumens prepared with process oil. Građevinar, Vol. 71(7), pp. 559-569. DOI: 10.14256/JCE.2587.2018.
  • [27] Topal, A., Sengoz, B., Kok, B.V., Yilmaz, M., Dokandari, P.A., Oner, J., Kaya, D., 2014. Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Construction and Building Materials, Vol. 57, pp. 38-44. DOI: 10.1016/j.conbuildmat.2014.01.093.
  • [28] Oner, J., Sengoz, B., 2018. Effect of polymers on rheological properties of waxy bitumens. Revista de la Construcción, Vol. 17(2), pp. 279-295. DOI: 10.7764/rdlc.17.2.279.
  • [29] Oner, J., Sengoz, B., Rija, S.F., Topal, A., 2017. Investigation of the rheological properties of elastomeric polymer-modified bitumen using warm-mix asphalt additives. Road Materials and Pavement Design, Vol. 18(5), pp. 1049-1066. DOI: 10.1080/14680629.2016.1206484.
  • [30] Almusawi, A., Sengoz, B., Topal, A., 2021. Investigation of mixing and compaction temperatures of modified hot asphalt and warm mix asphalt. Periodica Polytechnica Civil Engineering, Vol. 65(1), pp. 72-83.
  • [31] Almusawi, A., Sengoz, B., Topal, A., 2021. Evaluation of mechanical properties of different asphalt concrete types in relation with mixing and compaction temperatures. Construction and Building Materials, Vol. 268, p. 121140. DOI: 10.1016/j.conbuildmat.2020.121140.
There are 31 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Research Article
Authors

Ahmet Buğra İbiş 0000-0001-9433-9600

Burak Sengoz 0000-0003-0684-4880

Ali Almusawi 0000-0002-4507-2492

Derya Kaya Özdemir 0000-0003-1517-9405

Ali Topal 0000-0002-2601-1926

Early Pub Date January 15, 2025
Publication Date January 23, 2025
Submission Date January 30, 2024
Acceptance Date May 7, 2024
Published in Issue Year 2025 Volume: 27 Issue: 79

Cite

APA İbiş, A. B., Sengoz, B., Almusawi, A., Kaya Özdemir, D., et al. (2025). The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 80-85. https://doi.org/10.21205/deufmd.2025277911
AMA İbiş AB, Sengoz B, Almusawi A, Kaya Özdemir D, Topal A. The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements. DEUFMD. January 2025;27(79):80-85. doi:10.21205/deufmd.2025277911
Chicago İbiş, Ahmet Buğra, Burak Sengoz, Ali Almusawi, Derya Kaya Özdemir, and Ali Topal. “The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 79 (January 2025): 80-85. https://doi.org/10.21205/deufmd.2025277911.
EndNote İbiş AB, Sengoz B, Almusawi A, Kaya Özdemir D, Topal A (January 1, 2025) The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 80–85.
IEEE A. B. İbiş, B. Sengoz, A. Almusawi, D. Kaya Özdemir, and A. Topal, “The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements”, DEUFMD, vol. 27, no. 79, pp. 80–85, 2025, doi: 10.21205/deufmd.2025277911.
ISNAD İbiş, Ahmet Buğra et al. “The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (January 2025), 80-85. https://doi.org/10.21205/deufmd.2025277911.
JAMA İbiş AB, Sengoz B, Almusawi A, Kaya Özdemir D, Topal A. The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements. DEUFMD. 2025;27:80–85.
MLA İbiş, Ahmet Buğra et al. “The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 79, 2025, pp. 80-85, doi:10.21205/deufmd.2025277911.
Vancouver İbiş AB, Sengoz B, Almusawi A, Kaya Özdemir D, Topal A. The Effect of Different Mixing and Compaction Temperatures on the Particle (Cantabro) Loss in Porous Asphalt Pavements. DEUFMD. 2025;27(79):80-5.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.