Research Article
BibTex RIS Cite

Determination of cellular differences of CD133+/CD44+ prostate cancer stem cells in two-dimensional and three-dimensional media by Fourier transformation infrared spectroscopy

Year 2019, , 45 - 56, 26.04.2019
https://doi.org/10.5505/deutfd.2019.44227

Abstract

INTRODUCTION: Spheroid cultures reflect properties of tumor tissue better than monolayer cultures in terms of internal dynamics and interaction with other cells. The aim of this study is to investigate the similarities and differences in CD133+/CD44+ prostate cancer stem cells (CSCs) produced in three-dimensional (3D) and two-dimensional (2D) culture media.
METHODS: CSCs with CD133+/CD44+ surface marker properties in the DU-145 prostate cancer cell lines were isolated using flow cytometry (FACS). Spheroid structures were formed with agar-coated culture vessels. CSCs in 2D and 3D cultures were compared with Fourier transform infrared (FTIR) spectroscopy.
RESULTS: CD133+/CD44+ cells were observed to form micro-aggregates in cultured media in the first week. In the second week, mature spheroid structures were formed. FTIR analysis revealed that the 2D and 3D (multicellular tumor spheroids) models of CSCs exhibit significant differences in proteins, lipids and nucleic acids. Significant differences were detected in membrane lipid acyl chain length, membrane thickness, protein secondary structures and DNA oligonucleotides. The results showed that spheroids in 3D culture medium exhibit similar properties to in vivo tumor tissue.
DISCUSSION AND CONCLUSION: Physical, chemical and biological properties generated by environmental conditions significantly affect internal dynamics of cells and their interactions within the microenvironment. Reducing the cells in one dimension through the 2D culture medium does not reflect actual properties of cells. Therefore, cell dynamics in 3D culture media should be investigated. This study demonstrates that cellular lipids, membrane structure, protein secondary structures and nucleic acids of CSCs constituting an important cell population in cancer may be therapeutic targets.

References

  • Wong MCS, Goggins WB, Wang HHX et al. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries. Eur Urol 2016;70:862–874.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin 2015;65:87–108.
  • Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta - Mol Cell Res 2016;1863:1238–1260.
  • Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U, Castelo-Branco P. Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol Int 2017;99:125–136.
  • Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 2016;95:S20-5.
  • Jaworska D, Król W, Szliszka E. Prostate cancer stem cells: Research advances. Int J Mol Sci 2015;16:27433–27449.
  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol 2010;148:3–15.
  • Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst 2018;143(7):1624-1634.
  • Smolina M, Goormaghtigh E. Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures. Analyst 2018;143(11):2520-2530.
  • Derenne A, Gasper R, Goormaghtigh E. The FTIR spectrum of prostate cancer cells allows the classification of anticancer drugs according to their mode of action. Analyst 2011;136:1134–41.
  • Gasper R, Mijatovic T, Bénard A, Derenne A, Kiss R, Goormaghtigh E. FTIR spectral signature of the effect of cardiotonic steroids with antitumoral properties on a prostate cancer cell line. Biochim Biophys Acta 2010;1802:1087–94.
  • Gazi E, Dwyer J, Gardner P et al. Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. J Pathol 2003;201:99–108.
  • Toyran N. Fourier Transform Infrared Microspectroscopy Technique: Review. Turkiye Klin J Med Sci 2008;28:704–714
  • Aksoy C, Severcan F. Role of Vibrational Spectroscopy in Stem Cell Research. Hindawi Publ Corp Spectrosc An Int J 2012;27:167–184
  • Movasaghi Z, Rehman S, Rehman I ur. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl Spectrosc Rev 2008;43:134–179.
  • Diem M, Boydston-White S, Chiriboga L. Infrared Spectroscopy of Cells and Tissues: Shining Light onto a novel Subject. Appl Spectrosc 1999;53:148A–161A
  • Fabian H, Mäntele W. Infrared spectroscopy of proteins. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd, Chichester, UK, 2002;1–27.
  • Güler G, Gärtner RM, Ziegler C, Mäntele W. Lipid-Protein Interactions in the Regulated Betaine Symporter BetP Probed by Infrared Spectroscopy. J Biol Chem 2016;291:4295–307.
  • Korkmaz F, Köster S, Yildiz Ö, Mäntele W. The Role of Lipids for the Functional Integrity of Porin: An FTIR Study Using Lipid and Protein Reporter Groups. Biochemistry 2008;47:12126–12134.
  • Derenne A, Claessens T, Conus C, Goormaghtigh E. Infrared Spectroscopy of Membrane Lipids. In: Encyclopedia of Biophysics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013;1074–1081.
  • Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS One 2014;9(11):e111137.
  • Banyay M, Sarkar M, Gräslund A. A library of IR bands of nucleic acids in solution. Biophys Chem 2003;104:477–488.
  • Oktem G, Bilir A, Uslu R et al. Expression profiling of stem cell signaling alters with spheroid formation in CD133(high)/CD44(high) prostate cancer stem cells. Oncol Lett 2014;7:2103–2109.
  • Yan Y, Zuo X, Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med 2015;4:1033–1043.
  • Li Z. CD133: A stem cell biomarker and beyond. Exp Hematol Oncol 2013;2:1.
  • Wang L, Zuo X, Xie K WD. The Role of CD44 and Cancer Stem Cells. Methods Mol Biol 2018;1692:31–42.
  • Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol Lett 2017;14:6999–7010.
  • Kurioka D, Takagi A, Yoneda M, Hirokawa Y, Shiraishi T, Watanabe M. Multicellular spheroid culture models: Applications in prostate cancer research and therapeutics. J Cancer Sci Ther 2011;3:60–65.
  • Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci 2017;108:283–289.
  • Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON. Self-Renewal and Multilineage Differentiation In Vitro from Murine Prostate Stem Cells. Stem Cells 2007;25:2760–2769.
  • Chambers KF, Mosaad EMO, Russell PJ, Clements JA, Doran MR. 3D cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PLoS One 2014;9(11):e111029.
  • Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev 2017;92:1505–1520.
  • Riedl A, Schlederer M, Pudelko K et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. J Cell Sci 2017;130:203–218.
  • Stankevicius V, Kunigenas L, Stankunas E et al. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner. Biochem Biophys Res Commun 2017;484:726–733.
  • Mosaad EO, Chambers KF, Futrega K, Clements JA, Doran MR. The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform. Sci Rep 2018;8:1–12.
  • Peetla C, Vijayaraghavalu S L V. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles. Adv Drug Deliv Rev 2013;65:1686–1698.

Fourier dönüşümü kızılötesi spektroskopisi ile CD133+/CD44+ prostat kanser kök hücrelerinin iki boyutlu ve üç boyutlu ortamdaki hücresel farklılıklarının belirlemesi

Year 2019, , 45 - 56, 26.04.2019
https://doi.org/10.5505/deutfd.2019.44227

Abstract

GİRİŞ ve AMAÇ: Sferoid kültürleri, hücrelerin kendi iç dinamikleri ve diğer hücrelerle olan etkileşimleri açısından tek tabakalı kültürlere kıyasla tümör dokusunun özelliklerini daha iyi yansıtmaktadır. Bu çalışmanın amacı, üç boyutlu (3D) ve iki boyutlu (2D) kültür ortamlarında üretilen CD133+/CD44+ prostat kanser kök hücrelerinin (KKH) makromoleküllerindeki benzerlik ve farklılıklarının araştırılmasıdır.
YÖNTEM ve GEREÇLER: DU-145 prostat kanser hücre hattı içerisindeki CD133+/CD44+ yüzey belirteç özelliklerine sahip KKH’leri akış sitometrisi (FACS) kullanılarak izole edilmiştir. Agarla kaplı kültür kapları ile sferoid yapıları oluşturulmuştur. 2D ve 3D kültür ortamlarındaki KHK hücreleri Fourier dönüşümü kızılötesi (FTIR) spektroskopisi ile karşılaştırılmıştır. 
BULGULAR: CD133+/CD44+ hücrelerin birinci haftada agarlı kültür ortamlarında mikro-agregatlar oluşturduğu gözlenmiştir. İkinci haftada ise, olgun sferoid yapıların oluştuğu saptanmıştır. 2D ve 3D (multisellüler tümör sferoidleri) kültür ortamlarında üretilen hücreler ile yapılan FTIR analizleri KHK hücre yapısındaki proteinler, lipitler, karbonhidratlar ve nükleik asitlerde (DNA, RNA) önemli derecede farklanmalar olduğunu göstermiştir. Membran lipit açil zincir uzunluğu ve hücre zarı kalınlığı, proteinlerin sekonder yapıları ve DNA oligonükleotitlerin baz sekanslarında veya fonksiyonel gruplarında önemli farklanmaların olduğu tespit edilmiştir. Elde edilen sonuçlar, 3D kültür ortamında üretilen sfreoid yapılarının in vivo tümör dokusu ile benzer özellikler sergilediğini göstermiştir.
TARTIŞMA ve SONUÇ: Hücre ortam koşulları ile yaratılmış olan fiziksel, kimyasal ve biyolojik özellikler hücrelerin kendi iç dinamiğini ve mikroçevresi içerisindeki etkileşimlerini önemli derecede etkilemektedir. 2D kültür ortamları ile hücreleri tek boyutta indirgemek hücrelerin gerçek özelliklerini yansıtmamaktadır. Bu nedenle, 3D kültür ortamları ile hücre dinamiklerinin incelenmesi gerekmektedir. Bu çalışmadan elde edilen sonuçlar, kanserde önemli bir hücre popülasyonunu oluşturan KKH’lerin membran yapısı, lipitler, proteinlerin sekonder yapıları ve DNA oligonükleotit yapılarının terapötik hedef olabileceğini göstermektedir.

References

  • Wong MCS, Goggins WB, Wang HHX et al. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries. Eur Urol 2016;70:862–874.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin 2015;65:87–108.
  • Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta - Mol Cell Res 2016;1863:1238–1260.
  • Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U, Castelo-Branco P. Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol Int 2017;99:125–136.
  • Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 2016;95:S20-5.
  • Jaworska D, Król W, Szliszka E. Prostate cancer stem cells: Research advances. Int J Mol Sci 2015;16:27433–27449.
  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol 2010;148:3–15.
  • Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst 2018;143(7):1624-1634.
  • Smolina M, Goormaghtigh E. Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures. Analyst 2018;143(11):2520-2530.
  • Derenne A, Gasper R, Goormaghtigh E. The FTIR spectrum of prostate cancer cells allows the classification of anticancer drugs according to their mode of action. Analyst 2011;136:1134–41.
  • Gasper R, Mijatovic T, Bénard A, Derenne A, Kiss R, Goormaghtigh E. FTIR spectral signature of the effect of cardiotonic steroids with antitumoral properties on a prostate cancer cell line. Biochim Biophys Acta 2010;1802:1087–94.
  • Gazi E, Dwyer J, Gardner P et al. Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. J Pathol 2003;201:99–108.
  • Toyran N. Fourier Transform Infrared Microspectroscopy Technique: Review. Turkiye Klin J Med Sci 2008;28:704–714
  • Aksoy C, Severcan F. Role of Vibrational Spectroscopy in Stem Cell Research. Hindawi Publ Corp Spectrosc An Int J 2012;27:167–184
  • Movasaghi Z, Rehman S, Rehman I ur. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl Spectrosc Rev 2008;43:134–179.
  • Diem M, Boydston-White S, Chiriboga L. Infrared Spectroscopy of Cells and Tissues: Shining Light onto a novel Subject. Appl Spectrosc 1999;53:148A–161A
  • Fabian H, Mäntele W. Infrared spectroscopy of proteins. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd, Chichester, UK, 2002;1–27.
  • Güler G, Gärtner RM, Ziegler C, Mäntele W. Lipid-Protein Interactions in the Regulated Betaine Symporter BetP Probed by Infrared Spectroscopy. J Biol Chem 2016;291:4295–307.
  • Korkmaz F, Köster S, Yildiz Ö, Mäntele W. The Role of Lipids for the Functional Integrity of Porin: An FTIR Study Using Lipid and Protein Reporter Groups. Biochemistry 2008;47:12126–12134.
  • Derenne A, Claessens T, Conus C, Goormaghtigh E. Infrared Spectroscopy of Membrane Lipids. In: Encyclopedia of Biophysics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013;1074–1081.
  • Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS One 2014;9(11):e111137.
  • Banyay M, Sarkar M, Gräslund A. A library of IR bands of nucleic acids in solution. Biophys Chem 2003;104:477–488.
  • Oktem G, Bilir A, Uslu R et al. Expression profiling of stem cell signaling alters with spheroid formation in CD133(high)/CD44(high) prostate cancer stem cells. Oncol Lett 2014;7:2103–2109.
  • Yan Y, Zuo X, Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med 2015;4:1033–1043.
  • Li Z. CD133: A stem cell biomarker and beyond. Exp Hematol Oncol 2013;2:1.
  • Wang L, Zuo X, Xie K WD. The Role of CD44 and Cancer Stem Cells. Methods Mol Biol 2018;1692:31–42.
  • Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol Lett 2017;14:6999–7010.
  • Kurioka D, Takagi A, Yoneda M, Hirokawa Y, Shiraishi T, Watanabe M. Multicellular spheroid culture models: Applications in prostate cancer research and therapeutics. J Cancer Sci Ther 2011;3:60–65.
  • Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci 2017;108:283–289.
  • Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON. Self-Renewal and Multilineage Differentiation In Vitro from Murine Prostate Stem Cells. Stem Cells 2007;25:2760–2769.
  • Chambers KF, Mosaad EMO, Russell PJ, Clements JA, Doran MR. 3D cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PLoS One 2014;9(11):e111029.
  • Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev 2017;92:1505–1520.
  • Riedl A, Schlederer M, Pudelko K et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. J Cell Sci 2017;130:203–218.
  • Stankevicius V, Kunigenas L, Stankunas E et al. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner. Biochem Biophys Res Commun 2017;484:726–733.
  • Mosaad EO, Chambers KF, Futrega K, Clements JA, Doran MR. The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform. Sci Rep 2018;8:1–12.
  • Peetla C, Vijayaraghavalu S L V. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles. Adv Drug Deliv Rev 2013;65:1686–1698.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Günnur Güler 0000-0002-8485-7372

Eda Açıkgöz This is me 0000-0002-6772-3081

Gülperi Öktem 0000-0001-6227-9519

Publication Date April 26, 2019
Submission Date September 5, 2018
Published in Issue Year 2019

Cite

Vancouver Güler G, Açıkgöz E, Öktem G. Fourier dönüşümü kızılötesi spektroskopisi ile CD133+/CD44+ prostat kanser kök hücrelerinin iki boyutlu ve üç boyutlu ortamdaki hücresel farklılıklarının belirlemesi. DEU Tıp Derg. 2019;33(1):45-56.