Research Article
BibTex RIS Cite

Cerebral oxygenation and its relation with blood gases and haemodynamic parameters in laparoscopic cholecystectomy with 5 cm H2O PEEP

Year 2020, Volume: 34 Issue: 2, 153 - 161, 31.08.2020
https://doi.org/10.5505/deutfd.2020.03779

Abstract

INTRODUCTION: Pneumoperitoneum application during abdominal surgeries can have negative effects on haemodynamic and respiratory parameters. Cerebral oxygenation level is influenced by many factors; the partial arterial CO2 pressure (PaCO2) level is the main determinant factor among them. We investigated the effects of CO2 insufflation and the head-up position on haemodynamic parameters and cerebral oxygenation levels during laparoscopic cholecystectomy with the application of 5 cmH2O positive end–expiratory pressure (PEEP).
METHODS: 18-65 years old, forty patients with an ASA physical status of I–II were included in the study. After anaesthesia induction, 5 cmH2O PEEP was applied and CO2 was insufflated into the abdominal space. Patients were operated in the 15° head-up position.
RESULTS: Mean cardiac output was observed to be significantly higher after desufflation (5.80 ± 1.39) as compared to the initial values prior to the pneumoperitoneum application (5.08 ± 0.95). (p< 0.05)). There was no significant change in other haemodynamic parameters or cerebral oxygenation levels. PaCO2 and end-tidal CO2 (EtCO2) levels significantly increased during the pneumoperitoneum period (PaCO2 = 33.37 ± 4.97, 36.77 ± 3.91, and 39.35 ± 3.51 mmHg, and EtCO2 = 31.52 ± 2.80, 33.95 ± 3.38, and 35.72 ± 2.92 mmHg; before, at 5 and 20 min after insufflation respectively; p < 0.05).
DISCUSSION AND CONCLUSION: Application of 5 cm H2O PEEP does not improve the cerebral oxygenation but may contribute to preservation of baseline values with stable haemodynamic status after insufflation during laparoscopic cholecystectomy. Fluid administering strategy and using opioids are important to achieve stable haemodynamic condition. In addition, mild increased PaCO2 levels may contribute to preserving cerebral oxygenation.

References

  • Gipson CL, Johnson GA, Fisher R, Stewart A, Giles G, Johnson JO, et al. Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Acces Surg. 2006;2:67-72.
  • Veekash G, Wei LX, Su M. Carbon dioxide pneumoperitoneum, physiologic changes and anesthetic concerns. Ambul Surg. 2010;16:41-6.
  • Koivusalo AM, Lindgren L. Effects of carbon dioxide pneumoperitoneum for laparoscopic cholecystectomy. Acta Anesthesiol Scand. 2000;44:834-41.
  • Jo YY, Lee JY, Lee MG, Kwak HJ. Effects of high positive end-expiratory pressure on haemodynamics and cerebral oxygenation during pneumoperitoneum in the Trendelenburg position. Anaesthesia. 2013;68:938-43.
  • Kwak HJ, Park SK, Lee KC, Lee DC, Kim JY. High positive end-expiratory pressure preserves cerebral oxygen saturation during laparoscopic cholecystectomy under propofol anesthesia. Surg Endosc. 2013;27:415-20.
  • Kitajima T, Okuda Y, Yamaguchi S, Takanishi T, Kumagai M, Ido K. Response of cerebral oxygen metabolism in the head-up position during laparoscopic cholecystectomy. Surg Laparosc Endosc. 1998;8:449-52.
  • Kurukahvecioğlu O, Sare M, Karamercan A, Gunaydın B, Anadol Z, Tezel E. Intermittent pneumatic sequential compression of the lower extremities restores the cerebral oxygen saturation during laparoscopic cholecystectomy. Surg Endosc. 2008;22:907-11.
  • Casati A, Spreafico E, Putzu M, Fanelli G. New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anesthesiol. 2006;72:605-25.
  • Shapiro HM. Intracranial hypertension: therapeutic and anesthetic considerations. Anesthesiology. 1975;43:445-71.
  • Meex I, Vundelinckx J, Buyse K, Deburggraeve F, De Naeyer S, Desloovere V, et al. Cerebral tissue oxygen saturation values I volunteers and patients in the lateral decubitus and beach chair positions: a prospective observational study. Can J Anaesth. 2016;63:537-43.
  • Park EY, Koo BN, Min T, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895-9.
  • Meininger D, Yhahn C, Mierdl S, Westphal K, Zwissler B. Positive end-expiratory pressure improves arterial oxygenation during prolonged pneumoperitoneum. Acta Anaesthesiol Scand. 2005;49:778-83.
  • Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607-62.
  • Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Vender JS, et al. Effect of ventilation on cerebral oxygenation in patients undergoing surgery in the beach chair position: a randomized controlled trial. Br J Anaesth. 2014;113:618-27.
  • Joris JL, Noirot DP, Legrand MJ, Jacquet NJ, Lamy ML. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067-71.
  • Bäcklund M, Kellokumpu I, Scheinin T, von Smitten K, Tikkanen I, Lindgren L. Effect of temperature of insufflated CO2 during and after prolonged laparoscopic surgery. Surg Endosc. 1998:12:1126-30.
  • Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular and respiratory homeostasis during robotic prostatectomy. Br J Anaest. 2010;104:433-9.
  • Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO2 reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg. 2002;94:255-8.
  • Meng L, Mantulin WW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z, et al. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency-domain near-infrared spectroscopy. Can J Anaesth. 2012;59:357-65.
  • Picton P, Chambers J, Shanks A, Dorje P. The influence of inspired oxygen fraction and end-tidal carbon dioxide on post-cross-clamp cerebral oxygenation during carotid endarterectomy under general anesthesia. Anesth Analg. 2010;110:581-7.
  • Picton P, Dering A, Alexander A, Neff M, Miller BS, Shanks A, et al. Influence of ventilation strategies and anesthetic techniques on regional cerebral oximetry in the beach chair position: a prospective interventional study with a randomized comparison of two anesthetics. Anesthesiology. 2015;123:765-74.
  • Hemphill JC, Knudson MM, Derugin N, Morabito D, Manley GT. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery. 2001;48:377-84.
  • Kusku A, Demir G, Cukurova Z, Eren G, Hergünsel O. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy. Braz J Anesthesiol. 2014;64:241-6.
  • Burkhart CS, Rossi A, Dell-Kuster S, Gamberini M, Möckli A, Siegemund M, et al. Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation. Brit J Anaesth. 2011;107:742-8.
  • Maracajá-Neto LF, Verçosa N, Roncally AC, Giannella A, Bozza FA, Lessa MA. Beneficial effects of high positive end-expiratory pressure in lung respiratory mechanics during laparoscopic surgery. Acta Anaesthesiol Scand. 2009; 53:210-7.
  • Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33:2367-72.
  • Sen O, Erdogan Doventas Y. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy. Rev Bras Anestesiol. 2017; 67: 28-34.
  • Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandes-Bustamante A, Futier E et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016; 4: 272- 80.
  • Jo YY, Kwak H-J. What is the proper ventilation strategy during laparoscopic surgery? Korean J Anesthesiol. 2017; 70(6): 596.
  • D‘Antini D, Rauseo M, Grasso S, et al: Physiological effects of the open lung approach during laparoscopic cholecystectomy: focus on driving pressure. Minerva Anesthesiol. 2018; 84: 159–167.

5 cm H2O PEEP uygulanan laparoskopik kolesistektomilerde serebral oksijenasyonun kan gazları ve hemodinami ile ilişkisi

Year 2020, Volume: 34 Issue: 2, 153 - 161, 31.08.2020
https://doi.org/10.5505/deutfd.2020.03779

Abstract

GİRİŞ ve AMAÇ: Pnömoperitonyumun hemodinamik ve solunumsal parametreler üzerine olumsuz etkileri olabilmektedir. Serebral oksijenasyon, parsiyel arteriyel CO2 basıncı (PaCO2) temel belirleyici olmakla birlikte birçok faktörden etkilenir. Bu çalışmada 5 cmH2O pozitif end ekspiratuar basınç (PEEP) uygulaması ile laparoskopik kolesistektomilerde CO2 insüflasyonu ve baş yukarı pozisyonun hemodinamik parametreler ve serebral oksijenasyon üzerine etkilerini araştırdık.
YÖNTEM ve GEREÇLER: Anestezi risk grubu ASA I - II olan, 18-65 yaş arası 40 hasta çalışmaya dahil edildi. Anestezi indüksiyonundan sonra, 5 cmH2O PEEP uygulandı ve abdomen CO2 ile insufle edildi. Hastalar 15 ° baş pozisyonunda opere edildi.
BULGULAR: Pnömoperitonyum peryodu ile karşılaştırılınca, desüflasyon sonrası dönemde kardiyak debinin (CO) arttığı gözlendi (sırasıyla 5.08 ± 0.95 ve 5.80 ± 1.39; p <0.05). Diğer hemodinamik parametrelerde veya serebral oksijenasyon seviyelerinde değişiklik yoktu. Pnömoperiton periyodunda PaCO2 ve end-tidal CO2 (EtCO2) seviyelerinde yükselme saptandı (PaCO2 = 33.37 ± 4.97, 36.77 ± 3.91 ve 39.35 ± 3.51 mmHg ve EtCO2 = 31.52 ± 2.80, 33.95 ± 3.38 ve 35.72 ± 2.92 mm-Hg; insuflasyon öncesi, insüflasyondan 5 ve 20 dakika sonra, p <0.05).
TARTIŞMA ve SONUÇ: Laparoskopik kolesistektomi sırasında 5 cmH2O PEEP uygulamasının serebral oksijenasyonu arttırmadığı, fakat insüflasyon sonrası bazal değerlerin korunmasına katkıda bulunabileceği kanısına varıldı. Sıvı uygulama stratejisi ve opioid kullanımı, stabil hemodinamik durumun sağlanmasında önemlidir. Buna ek olarak PaCO2 düzeyinde ılımlı yükselme serebral oksijenasyonun korunmasına katkıda bulunabilir.

References

  • Gipson CL, Johnson GA, Fisher R, Stewart A, Giles G, Johnson JO, et al. Changes in cerebral oximetry during peritoneal insufflation for laparoscopic procedures. J Minim Acces Surg. 2006;2:67-72.
  • Veekash G, Wei LX, Su M. Carbon dioxide pneumoperitoneum, physiologic changes and anesthetic concerns. Ambul Surg. 2010;16:41-6.
  • Koivusalo AM, Lindgren L. Effects of carbon dioxide pneumoperitoneum for laparoscopic cholecystectomy. Acta Anesthesiol Scand. 2000;44:834-41.
  • Jo YY, Lee JY, Lee MG, Kwak HJ. Effects of high positive end-expiratory pressure on haemodynamics and cerebral oxygenation during pneumoperitoneum in the Trendelenburg position. Anaesthesia. 2013;68:938-43.
  • Kwak HJ, Park SK, Lee KC, Lee DC, Kim JY. High positive end-expiratory pressure preserves cerebral oxygen saturation during laparoscopic cholecystectomy under propofol anesthesia. Surg Endosc. 2013;27:415-20.
  • Kitajima T, Okuda Y, Yamaguchi S, Takanishi T, Kumagai M, Ido K. Response of cerebral oxygen metabolism in the head-up position during laparoscopic cholecystectomy. Surg Laparosc Endosc. 1998;8:449-52.
  • Kurukahvecioğlu O, Sare M, Karamercan A, Gunaydın B, Anadol Z, Tezel E. Intermittent pneumatic sequential compression of the lower extremities restores the cerebral oxygen saturation during laparoscopic cholecystectomy. Surg Endosc. 2008;22:907-11.
  • Casati A, Spreafico E, Putzu M, Fanelli G. New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anesthesiol. 2006;72:605-25.
  • Shapiro HM. Intracranial hypertension: therapeutic and anesthetic considerations. Anesthesiology. 1975;43:445-71.
  • Meex I, Vundelinckx J, Buyse K, Deburggraeve F, De Naeyer S, Desloovere V, et al. Cerebral tissue oxygen saturation values I volunteers and patients in the lateral decubitus and beach chair positions: a prospective observational study. Can J Anaesth. 2016;63:537-43.
  • Park EY, Koo BN, Min T, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895-9.
  • Meininger D, Yhahn C, Mierdl S, Westphal K, Zwissler B. Positive end-expiratory pressure improves arterial oxygenation during prolonged pneumoperitoneum. Acta Anaesthesiol Scand. 2005;49:778-83.
  • Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607-62.
  • Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Vender JS, et al. Effect of ventilation on cerebral oxygenation in patients undergoing surgery in the beach chair position: a randomized controlled trial. Br J Anaesth. 2014;113:618-27.
  • Joris JL, Noirot DP, Legrand MJ, Jacquet NJ, Lamy ML. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067-71.
  • Bäcklund M, Kellokumpu I, Scheinin T, von Smitten K, Tikkanen I, Lindgren L. Effect of temperature of insufflated CO2 during and after prolonged laparoscopic surgery. Surg Endosc. 1998:12:1126-30.
  • Kalmar AF, Foubert L, Hendrickx JF, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular and respiratory homeostasis during robotic prostatectomy. Br J Anaest. 2010;104:433-9.
  • Huettemann E, Terborg C, Sakka SG, Petrat G, Schier F, Reinhart K. Preserved CO2 reactivity and increase in middle cerebral arterial blood flow velocity during laparoscopic surgery in children. Anesth Analg. 2002;94:255-8.
  • Meng L, Mantulin WW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z, et al. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency-domain near-infrared spectroscopy. Can J Anaesth. 2012;59:357-65.
  • Picton P, Chambers J, Shanks A, Dorje P. The influence of inspired oxygen fraction and end-tidal carbon dioxide on post-cross-clamp cerebral oxygenation during carotid endarterectomy under general anesthesia. Anesth Analg. 2010;110:581-7.
  • Picton P, Dering A, Alexander A, Neff M, Miller BS, Shanks A, et al. Influence of ventilation strategies and anesthetic techniques on regional cerebral oximetry in the beach chair position: a prospective interventional study with a randomized comparison of two anesthetics. Anesthesiology. 2015;123:765-74.
  • Hemphill JC, Knudson MM, Derugin N, Morabito D, Manley GT. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery. 2001;48:377-84.
  • Kusku A, Demir G, Cukurova Z, Eren G, Hergünsel O. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy. Braz J Anesthesiol. 2014;64:241-6.
  • Burkhart CS, Rossi A, Dell-Kuster S, Gamberini M, Möckli A, Siegemund M, et al. Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation. Brit J Anaesth. 2011;107:742-8.
  • Maracajá-Neto LF, Verçosa N, Roncally AC, Giannella A, Bozza FA, Lessa MA. Beneficial effects of high positive end-expiratory pressure in lung respiratory mechanics during laparoscopic surgery. Acta Anaesthesiol Scand. 2009; 53:210-7.
  • Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33:2367-72.
  • Sen O, Erdogan Doventas Y. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy. Rev Bras Anestesiol. 2017; 67: 28-34.
  • Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandes-Bustamante A, Futier E et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016; 4: 272- 80.
  • Jo YY, Kwak H-J. What is the proper ventilation strategy during laparoscopic surgery? Korean J Anesthesiol. 2017; 70(6): 596.
  • D‘Antini D, Rauseo M, Grasso S, et al: Physiological effects of the open lung approach during laparoscopic cholecystectomy: focus on driving pressure. Minerva Anesthesiol. 2018; 84: 159–167.
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Mustafa Azizoğlu 0000-0002-8266-5203

Süleyman Memiş This is me 0000-0002-4467-8927

Funda Bargu This is me 0000-0002-3482-9795

İlkay Saydere This is me 0000-0002-9356-7158

Handan Birbiçer 0000-0003-3510-9279

Gülhan Örekici Temel This is me 0000-0002-2835-6979

Publication Date August 31, 2020
Submission Date December 1, 2020
Published in Issue Year 2020 Volume: 34 Issue: 2

Cite

Vancouver Azizoğlu M, Memiş S, Bargu F, Saydere İ, Birbiçer H, Örekici Temel G. Cerebral oxygenation and its relation with blood gases and haemodynamic parameters in laparoscopic cholecystectomy with 5 cm H2O PEEP. J DEU Med. 2020;34(2):153-61.