Review
BibTex RIS Cite

3D SYSTEMS IN DENTISTRY

Year 2024, Volume: 6 Issue: 3, 120 - 140, 31.10.2024

Abstract

Hard tissue deficiencies in the craniofacial region are caused by a variety of diseases, ailments, injuries, and proper rehabilitation treatments are required to improve the quality of life for those affected. Bone defects are anatomically complex and occasionally subjected to high stresses. The challenges associated with current treatment options have led to the search for regenerative strategies aimed at developing biological materials that can restore, preserve or improve the function of tissues. 3D printing, commonly known as additive manufacturing, has opened up countless possibilities for the creation of different tissues in medicine and dentistry, with the possibility of incorporating living cells into the procedure. This review includes a survey of the current literature on the use of three-dimensional systems in the reconstruction of bone and soft tissue defects in dentistry, printing techniques and biomaterials used in these systems.

References

  • 1. Janjua OS, Qureshi SM, Shaikh MS, Alnazzawi A, Rodriguez-Lozano FJ, Pecci-Lloret MP, Zafar MS. Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. Int J Environ Res Public Health. 2022 Mar 20;19(6):3690.
  • 2. Urban IA, Montero E, Amerio E, Palombo D, Monje A. Techniques on vertical ridge augmentation: indications and effectiveness. Periodontology. 2000. 2023:1-30.
  • 3. Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O’Valle F, Jódar-Reyes AB, Peula-García JM. Bone regeneration from PLGA micro- nanoparticles. Biomed Res Int. 2015;2015:415289.
  • 4. Myeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. J Bone Joint Surg. 2011;93(23):2227–2236.
  • 5. Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines. 2021 Dec 30;10(1):71.
  • 6. EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. Biomater Adv. 2023 May;148:213371.
  • 7. Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med. 2020 Jul 15;9(7):2238.
  • 8. Bhatti SS, Singh J. 3D printing of biomaterials for biomedical applications: a review. Int J Interact Des Manuf (2023).
  • 9. Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000. 2023 Oct;93(1):358-384.
  • 10. Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang S-Y, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D Printing for biomedical applications. J. Mater. Chem. B. 10, 7473–7490 (2022)
  • 11. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A Review of Three-Dimensional Printing in Tissue Engineering. Tissue Eng Part B Rev. 2016 Aug;22(4):298-310
  • 12. Comperat L, Chagot L, Massot S, Stachowicz ML, Dusserre N, Médina C, Desigaux T, Dupuy JW, Fricain JC, Oliveira H. Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis. Adv Healthc Mater. 2024 Mar;13(6):e2303370.
  • 13. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent J (Basel). 2023 Dec 19;12(1):1
  • 14. Bajunaid SO, Altwaim B, Alhassan M, Alammari R. The fit accuracy of removable partial denture metal frameworks using conventional and 3D printed techniques: An in vitro study. J. Contemp. Dent. Pract. 2019, 20, 476–481
  • 15. Alzit FR Cade R, Naveau A, Babilotte J, Meglioli M, Catros S. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology. J. Dent. 2022, 117, 103909
  • 16. Erickson DM, Chance D, Schmitt S, Mathis J. An opinion survey of reported benefits from the use of stereolithographic models. J. Oral Maxillofac. Surg. 1999, 57, 1040–1043.
  • 17. Dawood A, Marti Marti B, Sauret-Jackson V. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529
  • 18. Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent. Mater. 2013, 29, e1–e10
  • 19. Buniag AG, Pratt AM, Ray JJ. Targeted endodontic microsurgery: A retrospective outcomes assessment of 24 cases. J. Endod. 2021, 47, 762–769.
  • 20. Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided Modern endodontic surgery: A novel approach for guided osteotomy and root resection. J. Endod. 2017, 43, 496–501.
  • 21. Oberoi G, Nitsch S, Edelmayer M, Janijic K, Muller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172.
  • 22. Jung JW, Lee JS, Cho DW. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci. Rep. 2016, 6, 21685.
  • 23. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on Bone Substitutes through 3D Bioprinting. Int J Mol Sci. 2020 Sep 23;21(19):7012.
  • 24. Mota C, Puppi D, Chiellini F, Chiellini E, J. Tissue Eng. Regen. Med. 9 (2015) 174–190.
  • 25. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH. 3-dimensional bioprinting for tissue engineering applications. Biomater. Res. 2016, 20, 12.
  • 26. Duan B, Wang M. Selective laser sintering and its biomedical applications. pp. 83–109 (2013).
  • 27. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343
  • 28. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat.Biotechnol.2014,32,773–785
  • 29. Chen H, Malheiro ADBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L. (2017). Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 9(44), 38187-38200.
  • 30. Veiga A, Silva IV, Duarte MM, Oliveira AL. Current trends on pro- tein driven bioinks for 3D printing. Pharmaceutics. 2021;13(9):1444.
  • 31. Osypko KF, Ciszyński MP, Kubasiewicz-Ross P, Hadzik J. Bone tissue 3D bioprinting in regenerative dentistry through the perspective of the diamond concept of healing: A narrative review. Adv Clin Exp Med. 2023 Aug;32(8):921-931.
  • 32. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. PLoS One 1 (2006), e79
  • 33. Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Front. Bioeng. Biotechnol. 10 (2022), 987195
  • 34. Al-Noaman A, Rawlinson SCF, Hill RG. J. Mech. Behav. Biomed. Mater. 125 (2022), 104948
  • 35. Qin H, Wei Y, Han J, Jiang X, Yang X, Wu Y, Gou Z, Chen L. J. Tissue Eng. Regen. Med. 16 (2022) 409–421
  • 36. Tian B, Li X, Zhang J, Zhang M, Gan D, Deng D, Sun L, He X, Wu C, Chen F. Int. J. Oral Sci. 14 (2022) 45
  • 37. Yao L, Flynn N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J. 2018, 18, 1070–1080
  • 38. Osidak E, Kozhukhov I, Osidak M, Domogatsky S. Collagen as Bioink for Bioprinting: A Comprehensive Review. Int. J. Bioprint. 2020, 22, 6.
  • 39. Tan H, Marra KG. Materials 3 (2010) 1746–1767
  • 40. Han J, Kim DS, Jang H, Kim HR, Kang HW, Shaddox LM. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J. Tissue Eng. 2019, 10
  • 41. Galler KM, Brandl FP, Kirchhof S, Widbiller M, Eidt A, Buchalla W, Göpferich A, Schmalz G. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering. Tissue Eng Part A. 2018 Feb;24(3-4):234-244. doi: 10.1089/ten.TEA.2016.0555. Epub 2017 Jul 20. PMID: 28537502.
  • 42. Zhang W, Ahluwalia IP, Literman R, Kaplan DL, Yelick PC. Human dental pulp progenitor cell behavior on aqueous and hexafluoroisopropanol based silk scaffolds. J Biomed Mater Res A. 2011 Jun 15;97(4):414-22. doi:10.1002/jbm.a.33062. Epub 2011 Apr 11. PMID: 21484985; PMCID: PMC3126627.
  • 43. EzEldeen M, Loos J, Mousavi Nejad Z, Cristaldi M, Murgia D, Braem A, Jacobs R. Eur. Cell Mater. 41 (2021) 485–501
  • 44. Hamedi H, Moradi S, Hudson SM, Tonelli AE. Carbohydr. Polym. 199 (2018) 445–460
  • 45. Salar Amoli M, Anand R, EzEldeen M, Amorim PA, Geris L, Jacobs R, Bloemen V. Carbohydr. Polym. 289 (2022), 119441
  • 46. Ganesh N, Hanna C, Nair SV, Nair LS. Int. J. Biol. Macromol. 55 (2013) 289–294
  • 47. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M, J. Biomed. Mater. Res. B Appl. Biomater. 92 (2010) 120–128
  • 48. Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S.3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J. Clin. Periodontol. 2017, 44, 428–437
  • 49. Sumida T, Otawa N, Kamata YU, et al. Custom-made titaniumdevices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional tita- nium mesh. J Craniomaxillofac Surg. 2015;43:2183-2188
  • 50. Chiapasco M, Casentini P, Tommasato G, Dellavia C, Del Fabbro M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: Preliminary results of a retrospective clinical study in humans. Clin Oral Implants Res.
  • 51. Lizio G, Pellegrino G, Corinaldesi G, Ferri A, Marchetti C, Felice P. Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study. Clin Oral Implants Res. 2022;33:607-621

DİŞ HEKİMLİĞİNDE 3D SİSTEMLER

Year 2024, Volume: 6 Issue: 3, 120 - 140, 31.10.2024

Abstract

Maksillofasiyal bölgedeki sert doku eksiklikleri çok sayıda hastalık, bozukluk ve yaralanmanın sonucudur. Etkilenen bireylerin yaşam kalitesini yeniden sağlamak için uygun rehabilitasyon tedavileri gereklidir. Kemik defektleri anatomik olarak karmaşıktır ve zaman zaman aşırı kuvvetlere de maruz kalabilir. Mevcut tedavi seçenekleriyle ilişkili zorluklar, dokuların işlevini geri kazandırabilecek, koruyabilecek veya iyileştirebilecek biyolojik materyaller geliştirmeyi amaçlayan rejeneratif stratejilerin araştırılmasına yol açmıştır. Yaygın olarak eklemeli üretim olarak bilinen 3D (üç boyutlu) baskı, tıp ve diş hekimliği alanında, canlı hücreleri prosedüre dahil etme imkanı ile birlikte farklı dokuların oluşturulması için sayısız olasılığın önünü açmıştır. Bu derleme, diş hekimliğinde kemik ve yumuşak doku defektlerinin rekonstrüksiyonunda üç boyutlu sistemlerin kullanılması, baskı teknikleri ve bu sistemlerde kullanılan biyomateryaller hakkında güncel literatür araştırmasını içermektedir.

References

  • 1. Janjua OS, Qureshi SM, Shaikh MS, Alnazzawi A, Rodriguez-Lozano FJ, Pecci-Lloret MP, Zafar MS. Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. Int J Environ Res Public Health. 2022 Mar 20;19(6):3690.
  • 2. Urban IA, Montero E, Amerio E, Palombo D, Monje A. Techniques on vertical ridge augmentation: indications and effectiveness. Periodontology. 2000. 2023:1-30.
  • 3. Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O’Valle F, Jódar-Reyes AB, Peula-García JM. Bone regeneration from PLGA micro- nanoparticles. Biomed Res Int. 2015;2015:415289.
  • 4. Myeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. J Bone Joint Surg. 2011;93(23):2227–2236.
  • 5. Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines. 2021 Dec 30;10(1):71.
  • 6. EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. Biomater Adv. 2023 May;148:213371.
  • 7. Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med. 2020 Jul 15;9(7):2238.
  • 8. Bhatti SS, Singh J. 3D printing of biomaterials for biomedical applications: a review. Int J Interact Des Manuf (2023).
  • 9. Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000. 2023 Oct;93(1):358-384.
  • 10. Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang S-Y, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D Printing for biomedical applications. J. Mater. Chem. B. 10, 7473–7490 (2022)
  • 11. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A Review of Three-Dimensional Printing in Tissue Engineering. Tissue Eng Part B Rev. 2016 Aug;22(4):298-310
  • 12. Comperat L, Chagot L, Massot S, Stachowicz ML, Dusserre N, Médina C, Desigaux T, Dupuy JW, Fricain JC, Oliveira H. Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis. Adv Healthc Mater. 2024 Mar;13(6):e2303370.
  • 13. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent J (Basel). 2023 Dec 19;12(1):1
  • 14. Bajunaid SO, Altwaim B, Alhassan M, Alammari R. The fit accuracy of removable partial denture metal frameworks using conventional and 3D printed techniques: An in vitro study. J. Contemp. Dent. Pract. 2019, 20, 476–481
  • 15. Alzit FR Cade R, Naveau A, Babilotte J, Meglioli M, Catros S. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology. J. Dent. 2022, 117, 103909
  • 16. Erickson DM, Chance D, Schmitt S, Mathis J. An opinion survey of reported benefits from the use of stereolithographic models. J. Oral Maxillofac. Surg. 1999, 57, 1040–1043.
  • 17. Dawood A, Marti Marti B, Sauret-Jackson V. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529
  • 18. Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent. Mater. 2013, 29, e1–e10
  • 19. Buniag AG, Pratt AM, Ray JJ. Targeted endodontic microsurgery: A retrospective outcomes assessment of 24 cases. J. Endod. 2021, 47, 762–769.
  • 20. Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided Modern endodontic surgery: A novel approach for guided osteotomy and root resection. J. Endod. 2017, 43, 496–501.
  • 21. Oberoi G, Nitsch S, Edelmayer M, Janijic K, Muller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172.
  • 22. Jung JW, Lee JS, Cho DW. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci. Rep. 2016, 6, 21685.
  • 23. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on Bone Substitutes through 3D Bioprinting. Int J Mol Sci. 2020 Sep 23;21(19):7012.
  • 24. Mota C, Puppi D, Chiellini F, Chiellini E, J. Tissue Eng. Regen. Med. 9 (2015) 174–190.
  • 25. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH. 3-dimensional bioprinting for tissue engineering applications. Biomater. Res. 2016, 20, 12.
  • 26. Duan B, Wang M. Selective laser sintering and its biomedical applications. pp. 83–109 (2013).
  • 27. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343
  • 28. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat.Biotechnol.2014,32,773–785
  • 29. Chen H, Malheiro ADBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L. (2017). Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 9(44), 38187-38200.
  • 30. Veiga A, Silva IV, Duarte MM, Oliveira AL. Current trends on pro- tein driven bioinks for 3D printing. Pharmaceutics. 2021;13(9):1444.
  • 31. Osypko KF, Ciszyński MP, Kubasiewicz-Ross P, Hadzik J. Bone tissue 3D bioprinting in regenerative dentistry through the perspective of the diamond concept of healing: A narrative review. Adv Clin Exp Med. 2023 Aug;32(8):921-931.
  • 32. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. PLoS One 1 (2006), e79
  • 33. Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Front. Bioeng. Biotechnol. 10 (2022), 987195
  • 34. Al-Noaman A, Rawlinson SCF, Hill RG. J. Mech. Behav. Biomed. Mater. 125 (2022), 104948
  • 35. Qin H, Wei Y, Han J, Jiang X, Yang X, Wu Y, Gou Z, Chen L. J. Tissue Eng. Regen. Med. 16 (2022) 409–421
  • 36. Tian B, Li X, Zhang J, Zhang M, Gan D, Deng D, Sun L, He X, Wu C, Chen F. Int. J. Oral Sci. 14 (2022) 45
  • 37. Yao L, Flynn N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J. 2018, 18, 1070–1080
  • 38. Osidak E, Kozhukhov I, Osidak M, Domogatsky S. Collagen as Bioink for Bioprinting: A Comprehensive Review. Int. J. Bioprint. 2020, 22, 6.
  • 39. Tan H, Marra KG. Materials 3 (2010) 1746–1767
  • 40. Han J, Kim DS, Jang H, Kim HR, Kang HW, Shaddox LM. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J. Tissue Eng. 2019, 10
  • 41. Galler KM, Brandl FP, Kirchhof S, Widbiller M, Eidt A, Buchalla W, Göpferich A, Schmalz G. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering. Tissue Eng Part A. 2018 Feb;24(3-4):234-244. doi: 10.1089/ten.TEA.2016.0555. Epub 2017 Jul 20. PMID: 28537502.
  • 42. Zhang W, Ahluwalia IP, Literman R, Kaplan DL, Yelick PC. Human dental pulp progenitor cell behavior on aqueous and hexafluoroisopropanol based silk scaffolds. J Biomed Mater Res A. 2011 Jun 15;97(4):414-22. doi:10.1002/jbm.a.33062. Epub 2011 Apr 11. PMID: 21484985; PMCID: PMC3126627.
  • 43. EzEldeen M, Loos J, Mousavi Nejad Z, Cristaldi M, Murgia D, Braem A, Jacobs R. Eur. Cell Mater. 41 (2021) 485–501
  • 44. Hamedi H, Moradi S, Hudson SM, Tonelli AE. Carbohydr. Polym. 199 (2018) 445–460
  • 45. Salar Amoli M, Anand R, EzEldeen M, Amorim PA, Geris L, Jacobs R, Bloemen V. Carbohydr. Polym. 289 (2022), 119441
  • 46. Ganesh N, Hanna C, Nair SV, Nair LS. Int. J. Biol. Macromol. 55 (2013) 289–294
  • 47. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M, J. Biomed. Mater. Res. B Appl. Biomater. 92 (2010) 120–128
  • 48. Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S.3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J. Clin. Periodontol. 2017, 44, 428–437
  • 49. Sumida T, Otawa N, Kamata YU, et al. Custom-made titaniumdevices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional tita- nium mesh. J Craniomaxillofac Surg. 2015;43:2183-2188
  • 50. Chiapasco M, Casentini P, Tommasato G, Dellavia C, Del Fabbro M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: Preliminary results of a retrospective clinical study in humans. Clin Oral Implants Res.
  • 51. Lizio G, Pellegrino G, Corinaldesi G, Ferri A, Marchetti C, Felice P. Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study. Clin Oral Implants Res. 2022;33:607-621
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Periodontics
Journal Section Periodontology
Authors

Zülal Deniz Güner 0009-0009-6439-5404

Nilsun Bağış 0000-0003-4301-8502

Publication Date October 31, 2024
Submission Date March 30, 2024
Acceptance Date August 27, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

Vancouver Güner ZD, Bağış N. DİŞ HEKİMLİĞİNDE 3D SİSTEMLER. Dent & Med J - R. 2024;6(3):120-4.




"The truest guide for everything in the world, for civilization, for life, for success, is science. Seeking a guide outside of science and science is heedlessness, ignorance, and deviating from the right path. It is only necessary to understand the development of science and science in every minute we live and to follow the progress in time. To attempt to apply the rules of science and science a thousand, two thousand, and thousands of years ago, today, after so many thousand years, is, of course, not to be in science and science."
M. Kemal ATATÜRK