BibTex RIS Cite

FACILITY LAYOUT DESIGN WITH GENETIC ALGORITHMS AND AN APPLICATION

Year 2009, Volume: 10 Issue: 1, 73 - 87, 01.01.2009

Abstract

Design of the facility layouts have important effects on the operational productivity and efficiency of a facility. Facility layout design problems FLDP are the problems that should consider the flow relations between departments and in the literature the use of Quadratic Assignment Problems QAP for these kinds of problems is very frequently applied. Since, for QAP, the FLDP is NP-Hard, in this study, Genetic Algorithms GA is utilized. The methodology is coded via Visual Studio C++ 6.0 and the program is called LO Layout Optimizer . The methodology is tested with QAP library test problems and the difference between LO results and the best known results are less than %1 for each problem. The methodology is applied to a supplier in the structural electricity materials manufacturing sector and a %41 decrease in the transportation costs is expected with the redesign of the facility

References

  • ADAMS, W.P., GUIGNARD, M., HAHN, P.M. HIGHTOWER, W.L. (2007). A level-2 reformulation-linearization technique bound for the quadratic assignment problem, European Journal of Operational Research, 180 (3), 983-996. ss.
  • ANGEL, E., ZISSIMOPOULOS, V. (2001). On the landspace ruggedness of the quadratic assignment problems, Theoretical Computer Science, 263 (1-2), 159- 172. ss.
  • BAYKASOĞLU, A., DERELİ, T., SABUNCU, I. (2006). An ant colony algorithm for solving budget constraint and unconstraint dynamic facility layout problems, Omega, 34, 385-396. ss.
  • BAZARAA, M.S., SHERALI, M.D. (1980). Bender’s partitioning scheme applied to a new formulation of the quadratic assignment problem, Naval Res Logistics Q, 27, 29-41. ss.
  • BURKARD, R.E. (1990). Location Locations with spatial interactions: the quadratic assignment problem. P.B. MIRCHANDANI, R.L. FRANCIS (editor). Discrete location theory. Berlin: Wiley.
  • BURKARD, R.E., KARISCH, S.E., RENDL, F. (1997). QAPLib [Internet],Graz University of Technology. [Erişim adresi]:http://www.seas.upenn.edu/qaplib/ [Erişim tarihi: 12/06/2007].
  • ÇELA, E. (1998). The quadratic assignment problem: Theory and algorithms. London: Kluwer Academic Publishers.
  • CHIANG, W.C., CHIANG, C. (1998). Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation, European Journal of Operational Research, 106, 457-488. ss.
  • CHRISTOFIDES, N., BENAVENT, E. (1964). An exact algorithm for the quadratic assignment problem, Operation Research, 37, 760-768. ss.
  • CHWIF, L., BARRETTO, M.R.P., MOSCATO, L.A. (1998). A solution to the facility layout problem using simulated annealing, Computers in Industry, 36, 125-132. ss.
  • DREZNER, Z. (2008). Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem, Computers & Operations Research, 35, 717-736. ss.
  • DUMAN, E., OR, I. (2007). The quadratic assignment problem in the context of the printed circuit board assembly process, Computers & Operations Research, 34, 163-179. ss.
  • EL-BAZ, M.A., (2004) A genetic algorithm for facility layout problems of different manufacturing environments, Computers & Industrial Engineering, 47, 233-246. ss.
  • ERTAY, T., RUAN, D., TUZKAYA, U.R. (2006) Integrated Data Envelopment Analysis and Analytic Hierarchy for the facility layout design in manufacturing systems, Information Sciences, 176, 237-262. ss.
  • FRANCIS, R.L., WHITE, J.A. (1974). Facility layout and location, Englewood Cliffs, N.J.: Printice-Hall
  • GOLDBERG, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Massachusetts: Addison-Wesley Publishing Company.
  • GOLDBERG, E.F.G., MACULAN, N., GOLDBARG, M.C. (2008). A new neighborhood for the QAP, Electronic Notes in Discrete Mathematics, 30, 3-8. ss.
  • HAHN, P., GRANT, T., HALL, N. (1998). A branch-and-bound algorithm fort he quadratic assignment problem based Hungarian method, European Journal of Operational Research, 108 (3), 629-640. ss.
  • HILLIER, F.S., CONNORS, M.M. (1966). Quadratic assignment problem algorithms and location of invisible facilities, Management Science, 13 (1), 42- 57. ss.
  • HOLLAND, J.H. (1975) Adaption in natural and artificial systems, Cambridge: MIT Press
  • KOOPMANS, T.C., BECKMAN, M. (1957). Assignment problems and the location of economic activities, Econometrica, 25, 53-76. ss.
  • LAWLER, E. (1963). The quadratic assignment problem, Management Science, 9, 856-599. ss.
  • LIGGET, R.S. (1981). The quadratic assignment problem, Management Science, 27 (4), 442-458. ss.
  • LOIOLA, E.M., ABREU, N.M.M. de, BOAVENTURA-NETTO, P.O., HAHN, P., QUERIDO, T. (1998). A survey for the quadratic assignment problem, European Journal of Operational Research, 176, 657-690. ss.
  • MANS, B., MAUTOR, T., ROUCAIROL, C. (1995). A parallel depth first search branch and bound algorithm for the quadratic assignment problem, European Journal of Operational Research, 81(3), 617-628. ss.
  • RAMKUMAR, A.S., PONNAMBALAM, S.G., JAWAHAR, N., SURESH, R.K. (2008). Iterated fast local search algorithm for solving quadratic assignment problems, Robotics and Computer-Integrated Manufacturing, 24 (3), 392-401. ss.
  • RENDL, F. (2002). The quadratic assignment problem, Z. DREZNER, H. HAMACHER (ed.). Facility location: applications and theory, İçinde, Berlin: Springer.
  • ROSENBLATT, M.J. (1986) The Dynamics of plant layout, Management Science, 32 (l), 76-86. ss.
  • ROUCAIROL, C. (1987). A parallel branch and bound algorithm for the quadratic assignment problem, Discrete Applied Mathematics, 18 (2), 211-225. ss.
  • SOLIMANPUR, M., VRAT, P., SHANKAR, R. (2004). Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing, European Journal of Operational Research, 157, 592-606. ss.
  • STUTZLE, T. (2006). Iterated local search for the quadratic assignment problem, European Journal of Operational Research, 174 (3), 1519-1539. ss.
  • TAILLARD, E.D., (1995). Comparison of iterative searches for the quadratic assignment problem, Location Science, 3, 87-105. ss.
  • TATE, D.M., SMITH, A.E. (1995) Genetic Approach to The Quadratic Assignment Problem, Computers and Operations Research, 22 (1), 73-83. ss.
  • TAVAKKOLI-MOGHADDAIN, R., SHAYAN, E. (1998) Facilities layout design by genetic algorithms, Computers and Industrial Engineering, 35(3-4), 527-530. ss.
  • WALL, M. (1996-1999) GALib [Internet], Massachusetts Institute of Technology (MIT). [Erişim adresi]:http://lancet.mit.edu/ga/, [Erişim tarihi: 10/06/2007].

GENETİK ALGORİTMALAR İLE TESİS YERLEŞİMİ TASARIMI VE BİR UYGULAMA

Year 2009, Volume: 10 Issue: 1, 73 - 87, 01.01.2009

Abstract

Tesis yerleşiminin en uygun bir şekilde tasarlanması, üretim tesislerinin etkin ve verimli bir şekilde işletilebilmesinde önemli bir role sahiptir. Tesis yerleşim tasarımı problemleri, çeşitli akış ilişkilerinin de değerlendirilmesini gerektiren problemlerdir ve literatürde Karesel Atama Problemleri KAP olarak çözümlendirilmesi yoluna sıkça gidilmiştir. KAP için tesis yerleşimi tasarımı NP-Zor sınıfına girmektedir ve bu nedenle, bu çalışmada, bu tarz problemlere çözüm getirmesi açısından başarılı bir metot olan Genetik Algoritmalar GA ’dan faydalanılmıştır. Visual Studio C++ 6.0 ortamında LO Layout Optimizer -Yerleşim En İyileyici isimli bir yazılım geliştirilmiştir. Bu yazılımla elde edilen sonuçlar, KAP kütüphanesinden alınan literatür problemleriyle test edilmiştir ve her problem için bilinen en iyi çözüme %99’dan daha fazla bir oranda yaklaşılmıştır. Metodoloji, yapısal elektrik malzemeleri imalat sektöründe bir tedarikçi firma için uygulanmıştır ve taşıma maliyetlerinde % 41’lik bir iyileşme sağlanabileceği ortaya konulmuştur.

References

  • ADAMS, W.P., GUIGNARD, M., HAHN, P.M. HIGHTOWER, W.L. (2007). A level-2 reformulation-linearization technique bound for the quadratic assignment problem, European Journal of Operational Research, 180 (3), 983-996. ss.
  • ANGEL, E., ZISSIMOPOULOS, V. (2001). On the landspace ruggedness of the quadratic assignment problems, Theoretical Computer Science, 263 (1-2), 159- 172. ss.
  • BAYKASOĞLU, A., DERELİ, T., SABUNCU, I. (2006). An ant colony algorithm for solving budget constraint and unconstraint dynamic facility layout problems, Omega, 34, 385-396. ss.
  • BAZARAA, M.S., SHERALI, M.D. (1980). Bender’s partitioning scheme applied to a new formulation of the quadratic assignment problem, Naval Res Logistics Q, 27, 29-41. ss.
  • BURKARD, R.E. (1990). Location Locations with spatial interactions: the quadratic assignment problem. P.B. MIRCHANDANI, R.L. FRANCIS (editor). Discrete location theory. Berlin: Wiley.
  • BURKARD, R.E., KARISCH, S.E., RENDL, F. (1997). QAPLib [Internet],Graz University of Technology. [Erişim adresi]:http://www.seas.upenn.edu/qaplib/ [Erişim tarihi: 12/06/2007].
  • ÇELA, E. (1998). The quadratic assignment problem: Theory and algorithms. London: Kluwer Academic Publishers.
  • CHIANG, W.C., CHIANG, C. (1998). Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation, European Journal of Operational Research, 106, 457-488. ss.
  • CHRISTOFIDES, N., BENAVENT, E. (1964). An exact algorithm for the quadratic assignment problem, Operation Research, 37, 760-768. ss.
  • CHWIF, L., BARRETTO, M.R.P., MOSCATO, L.A. (1998). A solution to the facility layout problem using simulated annealing, Computers in Industry, 36, 125-132. ss.
  • DREZNER, Z. (2008). Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem, Computers & Operations Research, 35, 717-736. ss.
  • DUMAN, E., OR, I. (2007). The quadratic assignment problem in the context of the printed circuit board assembly process, Computers & Operations Research, 34, 163-179. ss.
  • EL-BAZ, M.A., (2004) A genetic algorithm for facility layout problems of different manufacturing environments, Computers & Industrial Engineering, 47, 233-246. ss.
  • ERTAY, T., RUAN, D., TUZKAYA, U.R. (2006) Integrated Data Envelopment Analysis and Analytic Hierarchy for the facility layout design in manufacturing systems, Information Sciences, 176, 237-262. ss.
  • FRANCIS, R.L., WHITE, J.A. (1974). Facility layout and location, Englewood Cliffs, N.J.: Printice-Hall
  • GOLDBERG, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Massachusetts: Addison-Wesley Publishing Company.
  • GOLDBERG, E.F.G., MACULAN, N., GOLDBARG, M.C. (2008). A new neighborhood for the QAP, Electronic Notes in Discrete Mathematics, 30, 3-8. ss.
  • HAHN, P., GRANT, T., HALL, N. (1998). A branch-and-bound algorithm fort he quadratic assignment problem based Hungarian method, European Journal of Operational Research, 108 (3), 629-640. ss.
  • HILLIER, F.S., CONNORS, M.M. (1966). Quadratic assignment problem algorithms and location of invisible facilities, Management Science, 13 (1), 42- 57. ss.
  • HOLLAND, J.H. (1975) Adaption in natural and artificial systems, Cambridge: MIT Press
  • KOOPMANS, T.C., BECKMAN, M. (1957). Assignment problems and the location of economic activities, Econometrica, 25, 53-76. ss.
  • LAWLER, E. (1963). The quadratic assignment problem, Management Science, 9, 856-599. ss.
  • LIGGET, R.S. (1981). The quadratic assignment problem, Management Science, 27 (4), 442-458. ss.
  • LOIOLA, E.M., ABREU, N.M.M. de, BOAVENTURA-NETTO, P.O., HAHN, P., QUERIDO, T. (1998). A survey for the quadratic assignment problem, European Journal of Operational Research, 176, 657-690. ss.
  • MANS, B., MAUTOR, T., ROUCAIROL, C. (1995). A parallel depth first search branch and bound algorithm for the quadratic assignment problem, European Journal of Operational Research, 81(3), 617-628. ss.
  • RAMKUMAR, A.S., PONNAMBALAM, S.G., JAWAHAR, N., SURESH, R.K. (2008). Iterated fast local search algorithm for solving quadratic assignment problems, Robotics and Computer-Integrated Manufacturing, 24 (3), 392-401. ss.
  • RENDL, F. (2002). The quadratic assignment problem, Z. DREZNER, H. HAMACHER (ed.). Facility location: applications and theory, İçinde, Berlin: Springer.
  • ROSENBLATT, M.J. (1986) The Dynamics of plant layout, Management Science, 32 (l), 76-86. ss.
  • ROUCAIROL, C. (1987). A parallel branch and bound algorithm for the quadratic assignment problem, Discrete Applied Mathematics, 18 (2), 211-225. ss.
  • SOLIMANPUR, M., VRAT, P., SHANKAR, R. (2004). Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing, European Journal of Operational Research, 157, 592-606. ss.
  • STUTZLE, T. (2006). Iterated local search for the quadratic assignment problem, European Journal of Operational Research, 174 (3), 1519-1539. ss.
  • TAILLARD, E.D., (1995). Comparison of iterative searches for the quadratic assignment problem, Location Science, 3, 87-105. ss.
  • TATE, D.M., SMITH, A.E. (1995) Genetic Approach to The Quadratic Assignment Problem, Computers and Operations Research, 22 (1), 73-83. ss.
  • TAVAKKOLI-MOGHADDAIN, R., SHAYAN, E. (1998) Facilities layout design by genetic algorithms, Computers and Industrial Engineering, 35(3-4), 527-530. ss.
  • WALL, M. (1996-1999) GALib [Internet], Massachusetts Institute of Technology (MIT). [Erişim adresi]:http://lancet.mit.edu/ga/, [Erişim tarihi: 10/06/2007].
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Bahadır Gülsün

Gülfem Tuzkaya This is me

Cem Duman This is me

Publication Date January 1, 2009
Published in Issue Year 2009 Volume: 10 Issue: 1

Cite

APA Gülsün, B., Tuzkaya, G., & Duman, C. (2009). GENETİK ALGORİTMALAR İLE TESİS YERLEŞİMİ TASARIMI VE BİR UYGULAMA. Doğuş Üniversitesi Dergisi, 10(1), 73-87.