FANO RESONANCE QUENCH IN A STRONGLY CORRELATED PLEXCITONIC SYSTEM VIA ELECTRON-PHONON COUPLING
Year 2017,
Issue: 038, 7 - 22, 30.06.2017
Ali İhsan Göker
Arslan Ünal
Abstract
We investigated the optical absorption of a
nanojunction comprised of two level quantum emitter coupled to metal
nanoparticles possessing plasmon resonances and electron-phonon coupling by
solving the Dyson equations invoking the non-crossing approximation. We explored the evolution of the Fano
resonance arising due to plasmon-exciton coupling for different ambient
temperature, plasmon-exciton coupling and electron-phonon coupling values when
both levels are in Coulomb blockade. Our findings indicate that boosting
electron-phonon coupling cause a suppression of the Fano resonance for all
ambient temperature values. Increasing the plasmon-exciton coupling value
enables to reduce this suppression. Since the formation of the Fano resonance
is related to the formation of the Kondo resonance, we attributed this
situation to the gradual disappearance of the Kondo resonance arising from the
electron-phonon coupling.
References
- [1] Stockman, M. I. “Nanoplasmonics: Past, present and glimpse into future”, Optics Express, 19 (22), 22029-22106 (2011).
- [2] Maier, S. A. “Plasmonics: Fundamentals and applications”, Springer, New York, 1-224 (2007).
- [3] Lal, S, Link S. and Halas, N.J. “Nano-optics from sensing to waveguiding”, Nature Photonics, 1(11), 641–648 (2007).
- [4] Schuller, J. A., Barnard E. S., Cai, W., Jun, Y.C., White, J. S. and Brongersma, M. L. “Plasmonics for extreme light concentration and manipulation”, Nature Materials, 9 (3), 193–204 (2010).
- [5] Atwater H. A. and Polman A. , “Plasmonics for improved photovoltaic devices”, Nature Materials, 9(10), 865 (2010).
- [6] Zheng, Y. B., Kiraly, B., Weiss, P. S. and Huang, T. J. , “Molecular plasmonics for biology and nanomedicine”, Nanomedicine, 7 (5), 751-770 (2012).
- [7] Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. and Petta, J. R., “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors”, Science, 339 (6124), 1174–1179 (2013).
- [8] Fofang, N. T., Park, T. H., Neumann, O., Mirin, N. A., Nordlander P. and Halas N. J., “Plexcitonic nanoparticles: Plasmon−exciton coupling in nanoshell−j-aggregate complexes”, Nano Letters, 8(10), 3481–3487 (2008).
- [9] Wiederrecht , G. P., Wurtz, G. A. and Hranisavljevic, J., “Coherent Coupling of molecular excitons to electronic polarizations of nobel metal nanoparticles”, Nano Letters, 4(11), 2121-2125 (2004).
- [10] Walker, B. J., Dorn, A., Bulovic, V. and Bawendi, M. G. “Color-selective photocurrent enhancement in coupled j-aggregate/nanowires formed in solution”, Nano Letters, 11 (7), 2655-2659 (2011).
- [11] Coomar, A., Arntsen, C, Lopata, K. A., Pistinner, S. and Neuhauser, D. “Near field: A finite-difference time-dependent method for simulation of electrodynamics”, Journal of Chemical Physics, 135 (8), 084121 (2011).
- [12] Arntsen, C., Lopata, K., Wall, M. R., Bartell, L. and Neuhauser, D. “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine”, Journal of Chemical Physics, 134 (8), 084101 (2011).
- [13] Luk’yanchuk, B. Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H. and Chong, C. T., “The Fano resonance in plasmonic nanostructures and metamaterials”, Nature Materials, 9(9), 707-715 (2010).
- [14] Zuloaga, J, Prodan, E. and Nordlander, P. “Quantum description of the plasmon resonances of a nanoparticle dimer”, Nano Letters, 9(2), 887-891 (2009).
- [15] Zelinskyy, Y. and May, V. “Photoinduced switching of the current through a single molecule: Effects of surface plasmon excitations of the leads”, Nano Letters, 12(1), 446-452 (2012).
- [16] Manjavacas, A., Garcia de Abajo, F. J. and Nordlander, P. “Quantum plexcitonics: Strongly interacting plasmons and excitons”, Nano Letters, 11(6) , 2318- 2323 (2011).
- [17] White, A. J., Fainberg, B. D. and Galperin, M. “Collective plasmon-molecule excitations in nanojunctions: Quantum consideration”, Journal of Physical Chemistry Letters, 3(19), 2738-2743 (2012).
- [18] Anderson, P. W. “Localized magnetic states in metals”, Physical Review, 124, 41 (1961).
- [19] Kondo, J. “Resistance minimum in dilute magnetic alloys”, Progress in Theoretical Physics, 32(1), 37-49 (1964).
- [20] Kadanoff, L. P. and Baym, G. “Quantum statistical mechanics”, Benjamin, New York, 1-203 (1976).
- [21] D. C. Langreth, “Linear and nonlinear response theory with applications” in Linear and Nonlinear Electron Transport in Solids, J. T. Devreese and V. E. van Doren, Plenum, New York, 3-32 (1976).
- [22] Coleman, P. “New approach to the mixed valence problem”, Physical Review B, 29(6), 3035-3044 (1984).
- [23] Langreth, D. C. and Nordlander P., “Derivation of a master equation for charge-transfer processes in atom-surface collisions”, Physical Review B, 43(4), 2541-2557 (1991).
- [24] Shao, H. X., Langreth, D. C. and Nordlander, P. “Many-body theory for charge-transfer in atom-surface collisions”, Physical Review B, 49(19), 13929-13947 (1994).
- [25] Goker, A.“Strongly correlated plexcitonics: Evolution of the Fano resonance in the presence of Kondo correlations”, Physical Chemistry Chemical Physics, 17(17), 11569–11576 (2015).
- [26] Galperin, M., Nitzan, A. and Ratner, M. A. “Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: Nonequilibrium equation-of-motion approach”, Physical Review B, 76, 035301 (2007).
- [27] Lang, I. G. and Firsov, Y. A.“Kinetic theory of semiconductors with low mobility”, Soviet Physics-JETP, 16 (5), 1301-1312 (1963).
- [28] Werner, P. and Millis, A. J. “Efficient dynamical mean field simulation of the Holstein-Hubbard model”, Physical Review Letters, 99(14), 146404 (2007).
- [29] Goker, A. “Transient electron dynamics in a vibrating quantum dot in the Kondo regime”, Journal of Physics: Condensed Matter, 23(12), 125302 (2011).
- [30] Goker, A, Zhu, Z. Y., Manchon A. and Schwingenschlogl, U. “Role of the chemical bonding for the time-dependent electron Transport Through an Interacting Quantum Dot”, Chemical Physics Letters, 509 (1-3), 48-50 (2011).
- [31] Goker, A., Zhu, Z. Y., Manchon, A. and Schwingenschlogl, U. “Prediction of Femtosecond Oscillations in the Transient Current of a Quantum Dot in the Kondo Regime”, Physical Review B, 82(16), 161304(R) (2010).
- [32] Izmaylov, A. F., Goker, A., Friedman B. A. and Nordlander, P. “Transient current in a quantum dot subject to a change in coupling to its leads”, Journal of Physics: Condensed Matter, 18 (39), 8995–9006 (2006).
GÜÇLÜ KORELASYONLU PLEGZİTONİK BİR SİSTEMDE FANO REZONANSININ ELEKTRON-FONON EŞLEŞMESİ YOLUYLA BASTIRILMASI
Year 2017,
Issue: 038, 7 - 22, 30.06.2017
Ali İhsan Göker
Arslan Ünal
Abstract
Plazmon rezonanslarına sahip metal
nanoparçacıklarla eşleşmiş güçlü elektron korelasyonlarına ve elektron-fonon
eşleşmesine sahip iki düzeyli bir kuantum emitörden oluşan bir nano bağlantı
noktasının optik emilme spektrumunu Dyson denklemlerini kesişmeme yaklaşımıyla
çözerek inceledik. İki kesik düzey de Coulomb blokajındayken plazmon-egziton
eşleşmesinden doğan Fano rezonanasının evrimini değişik ortam sıcaklığı,
plazmon-egziton eşleşmesi ve elektron-fonon eşleşmesi değerleri için araştırdık.
Bulgularımız elektron-fonon eşleşmesini artırmanın bütün ortam sıcaklıklarında
Fano rezonansının bastırılmasına yol açtığını göstermektedir. Plazmon-egziton
eşleşme değerini artırmak bu bastırılmayı azaltmaya olanak sağlamaktadır. Fano
rezonansının oluşumu Kondo rezonansının oluşumu ile bağlantılı olduğundan, bu
durumu elektron-fonon eşleşmesinden ötürü Kondo rezonansının giderek yok
olmasına bağladık.
References
- [1] Stockman, M. I. “Nanoplasmonics: Past, present and glimpse into future”, Optics Express, 19 (22), 22029-22106 (2011).
- [2] Maier, S. A. “Plasmonics: Fundamentals and applications”, Springer, New York, 1-224 (2007).
- [3] Lal, S, Link S. and Halas, N.J. “Nano-optics from sensing to waveguiding”, Nature Photonics, 1(11), 641–648 (2007).
- [4] Schuller, J. A., Barnard E. S., Cai, W., Jun, Y.C., White, J. S. and Brongersma, M. L. “Plasmonics for extreme light concentration and manipulation”, Nature Materials, 9 (3), 193–204 (2010).
- [5] Atwater H. A. and Polman A. , “Plasmonics for improved photovoltaic devices”, Nature Materials, 9(10), 865 (2010).
- [6] Zheng, Y. B., Kiraly, B., Weiss, P. S. and Huang, T. J. , “Molecular plasmonics for biology and nanomedicine”, Nanomedicine, 7 (5), 751-770 (2012).
- [7] Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. and Petta, J. R., “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors”, Science, 339 (6124), 1174–1179 (2013).
- [8] Fofang, N. T., Park, T. H., Neumann, O., Mirin, N. A., Nordlander P. and Halas N. J., “Plexcitonic nanoparticles: Plasmon−exciton coupling in nanoshell−j-aggregate complexes”, Nano Letters, 8(10), 3481–3487 (2008).
- [9] Wiederrecht , G. P., Wurtz, G. A. and Hranisavljevic, J., “Coherent Coupling of molecular excitons to electronic polarizations of nobel metal nanoparticles”, Nano Letters, 4(11), 2121-2125 (2004).
- [10] Walker, B. J., Dorn, A., Bulovic, V. and Bawendi, M. G. “Color-selective photocurrent enhancement in coupled j-aggregate/nanowires formed in solution”, Nano Letters, 11 (7), 2655-2659 (2011).
- [11] Coomar, A., Arntsen, C, Lopata, K. A., Pistinner, S. and Neuhauser, D. “Near field: A finite-difference time-dependent method for simulation of electrodynamics”, Journal of Chemical Physics, 135 (8), 084121 (2011).
- [12] Arntsen, C., Lopata, K., Wall, M. R., Bartell, L. and Neuhauser, D. “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine”, Journal of Chemical Physics, 134 (8), 084101 (2011).
- [13] Luk’yanchuk, B. Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H. and Chong, C. T., “The Fano resonance in plasmonic nanostructures and metamaterials”, Nature Materials, 9(9), 707-715 (2010).
- [14] Zuloaga, J, Prodan, E. and Nordlander, P. “Quantum description of the plasmon resonances of a nanoparticle dimer”, Nano Letters, 9(2), 887-891 (2009).
- [15] Zelinskyy, Y. and May, V. “Photoinduced switching of the current through a single molecule: Effects of surface plasmon excitations of the leads”, Nano Letters, 12(1), 446-452 (2012).
- [16] Manjavacas, A., Garcia de Abajo, F. J. and Nordlander, P. “Quantum plexcitonics: Strongly interacting plasmons and excitons”, Nano Letters, 11(6) , 2318- 2323 (2011).
- [17] White, A. J., Fainberg, B. D. and Galperin, M. “Collective plasmon-molecule excitations in nanojunctions: Quantum consideration”, Journal of Physical Chemistry Letters, 3(19), 2738-2743 (2012).
- [18] Anderson, P. W. “Localized magnetic states in metals”, Physical Review, 124, 41 (1961).
- [19] Kondo, J. “Resistance minimum in dilute magnetic alloys”, Progress in Theoretical Physics, 32(1), 37-49 (1964).
- [20] Kadanoff, L. P. and Baym, G. “Quantum statistical mechanics”, Benjamin, New York, 1-203 (1976).
- [21] D. C. Langreth, “Linear and nonlinear response theory with applications” in Linear and Nonlinear Electron Transport in Solids, J. T. Devreese and V. E. van Doren, Plenum, New York, 3-32 (1976).
- [22] Coleman, P. “New approach to the mixed valence problem”, Physical Review B, 29(6), 3035-3044 (1984).
- [23] Langreth, D. C. and Nordlander P., “Derivation of a master equation for charge-transfer processes in atom-surface collisions”, Physical Review B, 43(4), 2541-2557 (1991).
- [24] Shao, H. X., Langreth, D. C. and Nordlander, P. “Many-body theory for charge-transfer in atom-surface collisions”, Physical Review B, 49(19), 13929-13947 (1994).
- [25] Goker, A.“Strongly correlated plexcitonics: Evolution of the Fano resonance in the presence of Kondo correlations”, Physical Chemistry Chemical Physics, 17(17), 11569–11576 (2015).
- [26] Galperin, M., Nitzan, A. and Ratner, M. A. “Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: Nonequilibrium equation-of-motion approach”, Physical Review B, 76, 035301 (2007).
- [27] Lang, I. G. and Firsov, Y. A.“Kinetic theory of semiconductors with low mobility”, Soviet Physics-JETP, 16 (5), 1301-1312 (1963).
- [28] Werner, P. and Millis, A. J. “Efficient dynamical mean field simulation of the Holstein-Hubbard model”, Physical Review Letters, 99(14), 146404 (2007).
- [29] Goker, A. “Transient electron dynamics in a vibrating quantum dot in the Kondo regime”, Journal of Physics: Condensed Matter, 23(12), 125302 (2011).
- [30] Goker, A, Zhu, Z. Y., Manchon A. and Schwingenschlogl, U. “Role of the chemical bonding for the time-dependent electron Transport Through an Interacting Quantum Dot”, Chemical Physics Letters, 509 (1-3), 48-50 (2011).
- [31] Goker, A., Zhu, Z. Y., Manchon, A. and Schwingenschlogl, U. “Prediction of Femtosecond Oscillations in the Transient Current of a Quantum Dot in the Kondo Regime”, Physical Review B, 82(16), 161304(R) (2010).
- [32] Izmaylov, A. F., Goker, A., Friedman B. A. and Nordlander, P. “Transient current in a quantum dot subject to a change in coupling to its leads”, Journal of Physics: Condensed Matter, 18 (39), 8995–9006 (2006).