BIODEGRADATION OF POLYCYCLİC AROMATIC HYDROCARBONS BY HALOPHİLİC BACTERİA AND HALOPHİLİC ARCHAEA
Year 2016,
Issue: 037, 35 - 46, 30.12.2017
Sevim Feyza Erdoğmuş
,
Safiye Elif Korcan
Abstract
Polycyclic aromatic hydrocarbons are widespread in various ecosystems and are
pollutants of great concern due to their potential toxicity, mutagenicity and
carcinogenicity. Because of their hydrophobic nature, most PAHs bind to
particulates in soil and sediments, rendering them less available for
biological uptake. Microbial degradation represents the major mechanism
responsible for the ecological remediation of PAHs contaminated sites. Hypersaline environments are important ecological
significance. As all other ecosystems, they are impacted by pollution. It is
estimated that 5% of industrial effluents are saline and hypersaline.
Nonextremophilic microorganisms are unable to efficiently perform the removal
of organic pollutants at high salt concentrations. Halophilic microorganisms
are metabolically different and are adapted to extreme salinity. These
microorganisms are good candidates for the bioremediation of hypersaline
environments. The purpose of this rewiev that determination of
halophilic bacteria and archaea biodegradation capacity of aromatic
hydrocarbons and to clarify the metabolic pathway in this process.
References
- [1] Wei, C., Bandowe, B.A., Han, Y., Cao, J., Zhan, C. and Wilcke, W., “Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China”, Chemosphere, 134,512-520 (2015).
- [2] Shimada, T., Murayama, N., Yamazaki, H., Tanaka, K., Takenaka, S., Komori, M., Kim, D. and Guengerich, F.P., “Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450, 2A13 and 2A6”, Chem. Res. Toxicol, 26,529-537 (2013).
- [3] Archana, C., Fazlurrahman,J., John, G., Oakeshott,·R. and Jain, K., “ Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation”, Ind. J. Microbiol, 48, 95-113 (2008).
- [4] Tao, X.Q., Lu, G.N., , Dang, Z., Yang, C. and Yi, X.Y., “ A phenanthrene-degrading strain Sphingomonas sp.GY2B isolated from contaminated soils”. Process. Biochem, 42, 401-408 (2007).
- [5] Peng, R.H., Xiong, A.S., Xue, Y., Fu, X.Y., Gao, F., Zhao, W., Tian, Y.S. and Yao, Q.H., “ Microbial biodegradation of polyaromatic hydrocarbons”. FEMS Microbiol. Rev, 32, 927–955 (2008).
- [6] Onduka, T,, Ojima, D., Kakuno, A., Mochida, K., Ito, K., Koyama, J. and Fujii, K., “Nitrated polycyclic aromatic hydrocarbons in the marine environment: acute toxicities for organisms at three trophic levels”. Jpn. J. Environ. Toxicol, 15,1-10 (2012).
- [7] Manzetti, S., “ Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties”. Environ. Chem. Lett. 10, 349-361 (2012).
- [8] Erdoğmuş, S.F., Korcan, S.E., Konuk, M., Güven, K. and Mutlu, M.B., “Aromatic hydrocarbon utilization ability of Chromohalobacter sp.” Ekoloji, 24 (94), 10-16 (2015).
- [9] Deka, H. and Lahkar, J., “Soil Bacteria for polycyclic aromatic hydrocarbon (PAH) remediation: Application
potentialities and limitations, Springer International Publishing Switzerland, K.R. Hakeem et al. (Eds.), Plant, Soil and Microbes, DOI: 10.1007/978-3-319-27455-3_15 (2016).
- [10] Dong, C., Bai, X., Sheng, H., Jiao, L., Zhou, H. and Shao, Z., “Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude”, Arc. Ocean Biogeosci, 12, 2163-2177 (2015).
- [11] Fathepure, B.Z., “Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments”, Front. Microbiol, 5,173 (2014).
- [12] Martins, L.F. and Peixoto, R.S. , “Biodegradation of petroleum hydrocarbons in hypersaline environments”, Braz. J. Microbiol, 43,865–872 (2012).
- [13] Borgne, S.L., Paniagua, D. and Vazquez-Duhalt, R., “ Biodegradation of organic pollutants by halophilic bacteria and archaea”. J.Mol. Microbiol. Biotechnol, 15, 74-92 (2008).
- [14] Dalvi, S., Nicholsona, C., Najarc, F., Roec, B.A., Canaanb, P., Hartsonb, S.D. and Fathepurea, B.Z., “ Isolation of a novel Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds at high salinity”, Appl. Environ. Microbiol. 80(21),6664–6676 (2014).
- [15] Dalvi, S., Youssef, N. H., Fathepure, B.Z., “ Microbial community structure analysis of a benzoate degrading halophilic archaeal enrichment”, Extremophiles, DOI: 10.1007/s00792-016-0823-0 (2016).
- [16] Wang, C.L., You, S.L. and Wang, S.L. “Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source”, Process. Biochem, 41, 1594-1601 (2006).
- [17] Lima, A.L.C., Farrington, J.W. and Reddy, C.M., “Combustion-derived polycyclic aromatic hydrocarbons in the environment-a review”, Environ. Forensics, 6, 109-131 (2005).
- [18] Keith, L.H. and Telliard, W.A., “Priority pollutants. I. A perspective view”, Environ. Sci. Technol, 13, 416-423(1979).
- [19] EPA, “Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons”. United States Environmental Protection Agency, EPA/600/R-93/089, (1993).
- [20] Liu, K., “Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fi red pilot FBC system”. J. Hazard. Mat, 84, 175-188(2001).
- [21] Oren, A., “Halophilic microorganism and their environments”, Kluwer Academic Publishers, Dordrecht, (2002).
- [22] Oren A., “Life at high salt concentrations”, Prokaryotes, 2, 263-282 (2006).
- [23] Mutlu, M.B. and Guven, K., “Bacterial diversity in Çamaltı saltern, Turkey”, Pol. J. Microbiol, 64 (1), 37-45 (2015).
- [24] Kushner, D., “The Halobacteriaceae. sp.” En C. Woese and Wolfe, S. (Eds.), The Bacteria, Academic Press, London, 8, 171-214 (1985).
- [25] Trigui, H., Masmoudi,S., Brochier-Armanet, C., Maalej, S. and Dukan, S., “Characterization of Halorubrum sfaxence sp. nov., A new halophilic archaeon isolated from the solar saltern of Sfax in Tunisia”, Int. J. Microbiol, DOI: 10.1155/2011/240191, (2011).
- [26] Ma, Y., Galinski, E.A., Grant, W.D., Oen, A. and Ventosa, A., “Halophiles: Life in saline environments”, Appl. Environ. Microbiol, 76, 6971-6981,(2010).
- [27] Arulazhagan, P. and Vasudevan, N., “Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons”. Mar. Poll. Bul, 58, 256-262, (2009).
- [28] Hough, D.W. and Danson, M.J., “ Archaebacteria: ancient organisms with commercial potential”. Lett. Appl. Microbiol, 9, 33-39, (1989).
- [29] Kunte, H.J., Trüper, G. and Stan-Lotter, H., “Halophilic microorganisms Astrobiology: The quest for the conditions of life”, Gerda Horneck, Christa Baumstark-Khan (Eds), Heidelberg: Springer-virlag, ISBN: 3-540-42101-7, (2001).
- [30] Mallick, S., Chatterjee, S. and Dutta, T.K., “A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strainPN/Y via meta-cleavage of 2-hydroxy-1-naphthoicacid: formationof trans-2,3-dioxo-5-(29-hydroxyphenyl)- penta-4-enoic acid”, Microbiol., 153, 2104-2115 (2007).
- [31] Lease, C.W.M., Bentham, R.H., Gaskin, S.E. and Juhasz, A.L., “Isolation and dentification of pyrene mineralizing Mycobacterium spp. from contaminated and uncontaminated sources”. Appl. Environ. Soil. Sci, DOI:101155/2011/409643, (2011).
- [32] Chang, C.H., Lee, J., Ko, B.G., Kim, S.K. and Chang, J.S., “Staphylococcus sp. KW-07 contains nahH gene encoding catechol 2,3-dioxygenase for phenanthrene degradation test in soil microcosm”, Int. Biodeter. Biodegr, 65, 198-203, (2011).
- [33] Cao, B., Geng, A. and Chee, L. “Induction of ortho-and meta-cleavage pathways in Pseudomonas in biodegradation of high benzoat concentration: MS identification of catabolic enzymes, genomics and proteomics”, Appl. Microbiol. Biotechnol, 81, 99-107,(2008).
- [34] Song, Y.J., “ Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter”. Korean. J. Microbiol. Biotechnol, 37, 333-339, (2009).
- [35] Tapilatu, Y.H., Grossi, V., Acquaviva, M., Militon, C., Bertrand, J.C. and Cuny, P., “Isolation of hydrocarbon degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France)”, Extremophiles, 14, 225-231,(2010).
- [36] Wu, M.L., Nie, M.Q., Wang, X.C. and Cao, W. “Analysis of phenanthrene biodegradation by using FITIR, UV and GC-MS”. Spectrochimica. Acta. Part. A, 75, 1047-1050, (2010).
- [37] Rockne, K.J. and Strand, S.E., “Anaerobic biodegradation of phenanthrene, naphthalene and biphenyl by a denitrifying enrichment culture”. Wat. Res, 35(1), 291-299, (2001).
- [38] Nicholson, C. A., “Biodegredasyon of petroleum hydrocarbons by halophilic and halotolerant microorganisms.” Oklahoma State University, Master Thesis, USA, 3-40, (2005).
- [39] Erdoğmuş, S. F., Mutlu, M.B., Korcan, S.E., Güven, K. and Konuk, M. “Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamaltı Saltern, Turkey”. Wat. Air. Soil. Pollut, 224(1449), DOI: 10.1007/s11270- 013-1449-9, (2013).
- [40] Kleinsteuber, S., Riis, V., Fetzer, I., Harms, H. and Müler, S., “ Population dynamics within a microbial consortium during growth on diesel fuel in saline environments”. Appl. Environ. Microbiol, 72, 3531-3542, (2006).
- [41] Young, C.H., Woo, S.H. and Park, J.M., “Effects of intermediate metabolites on phenanthrene”. J. Microbiol. Biotech, 16, 969-973,(2006).
- [42] Haddadi, A. And Shavandi, M., “Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil”, Int. Biodeter. Biodegr, 85, 29-34, (2013).
- [43] Açıkgöz, E. and Özcan, B., “Phenol biodegradation by halophilic archaea”, Int. Biodeter. Biodegr, 107,140-146, (2016).
- [44] Cuadros-Orellana, S., Pohlschroder, M. and Durrant, L.R., “Isolation and characterization of halophilic archaea able to grow in aromatic compounds”, Int. Biodeter. Biodegr, 57, 151-154, (2006).
- [45] Bugg, T.D.H., “Dioxygenase enzymes: catalytic mechanisms and chemical models”,Tetrahedron, 59, 7075-7101, (2003).
- [46] Dagley, S. , “A biochemical approach to some problems of environmental pollution”. Essays.Biochem, 11, 81-138, (1975).
- [47] Hayaishi, O., Katagiri, M. and Rothberg, S.J., “Mechanism of the pyrocatechase reaction”. J. Am. Chem. Soc, 77, 5450-5451, (1995).
- [48] Kojima, Y., Itada, N. and Hayaishi, O.J., “Metapyrocatachase: a new catechol-cleaving enzyme”. Biol. Chem, 236, 2223, (1961).
- [49] Guo, G., Fang, T., Wang, C., Huang, Y., Tian, F., Cui, Q. and Wang, H., “Isolation and characterization of two novel halotolerant catechol 2, 3-dioxygenases from a halophilic bacterial consortium”, Scı. Rep, DOI: 10.1038/srep17603, (2015).
- [50] Fairley, D.J., Boyd, D.R., Sharma, N.D., Allen, C.C.R., Morgan, P. and Larkin, M.J., “Aerobic metabolism of 4 hydroxybenzoic acidin archaea via an nusual pathway involving an intramolecular migration”, Appl. Environ. Microbiol, 68, 6246-6255, (2002).
- [51] Cerniglia, C.E., White, G.L. and Heflich, R.H., “Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons”, Arc. Microbiol., 143, 105-110, (1985).
- [52] Garcia, M.T., Ventosa, A. and Mellado, E., “Catabolic versatility of aromatic compound degrading halophilic bacteria”, FEMS Microbiol. Ecol, 54, 97-109, (2005).
- [53] Iwagami, S.G., “Protein purification and genetic characterization of a streptomycete protocatechuate 3,4 dioxygenase”. Master of Science, The University of British Colombia, Microbiology and Immunology, Columbia, (1999).
- [54] Saxena, P. and Thakur, I.S. “Purification and characterization of catechol 1,2 dioxygenase of Pseudumonas fluorescens for degradation of 4-chlorobenzoic acid”, Ind. J. Biotech, 4, 134-138, (2005).
- [55] Wang, C.L., You, S.L. and Wang, S.L., “Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source”. Process. Biochem, 41, 1594-1601, (2006).
- [56] Khemili-Talbi, S., Kebbouche-Gana, S., Akmoussi-Toumi, S., Angar, Y. and Gana, M.L., “Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity”, Extremophiles,19(6), DOI: 10.1007/s00792-015-0783-9, (2015).
POLİSİKLİK AROMATİK HİDROKARBONLARIN HALOFİLİK BAKTERİ VE ARKEA'LAR TARAFINDAN BİYOLOJİK OLARAK PARÇALANMALARI
Year 2016,
Issue: 037, 35 - 46, 30.12.2017
Sevim Feyza Erdoğmuş
,
Safiye Elif Korcan
Abstract
PAH’lar doğada yaygın olarak bulunurlar
ve potansiyel toksisiteleri, mutajeniteleri, karsinojeniteleri nedeniyle çevre
kirleticisi olarak büyük öneme sahiptirler. Hidrofobik özellikleri nedeniyle
pek çok PAH toprak ve sediment partiküllerine bağlanarak çevrede uzun süre
parçalanmadan kalabilmektedir. Aşırı tuzlu habitatlar ekolojik açıdan oldukça
önemlidirler. Tüm ekosistemler gibi bu ortamlarda sürekli olarak kontaminasyona
uğramaktadırlar. Endüstriyel atıkların yaklaşık olarak %5'i tuzlu veya aşırı
tuzlu atıklardır. Yüksek tuz konsantrasyonunda organik kirleticilerin ekstrem
olmayan mikroorganizmalar ile bertaraf edilmesi mümkün değildir. Halofilik
mikroorganizmalar metabolizmaları bakımından diğer mikroorganizmalardan
farklıdırlar ve aşırı tuzlu ortamlarda yaşamaya adapte olmuşlardır. Bu
mikroorganizmalar aşırı tuzlu ortamlardaki kirleticilerin biyoremediasyonları
için kullanılabilirler. Bu derlemenin amacı; halofilik bakteri ve arkeaların
aromatik hidrokarbonları biyolojik parçalama kapasitelerini ve bu süreçte
kullandıkları metabolik yolları aydınlatmaktır.
References
- [1] Wei, C., Bandowe, B.A., Han, Y., Cao, J., Zhan, C. and Wilcke, W., “Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China”, Chemosphere, 134,512-520 (2015).
- [2] Shimada, T., Murayama, N., Yamazaki, H., Tanaka, K., Takenaka, S., Komori, M., Kim, D. and Guengerich, F.P., “Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450, 2A13 and 2A6”, Chem. Res. Toxicol, 26,529-537 (2013).
- [3] Archana, C., Fazlurrahman,J., John, G., Oakeshott,·R. and Jain, K., “ Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation”, Ind. J. Microbiol, 48, 95-113 (2008).
- [4] Tao, X.Q., Lu, G.N., , Dang, Z., Yang, C. and Yi, X.Y., “ A phenanthrene-degrading strain Sphingomonas sp.GY2B isolated from contaminated soils”. Process. Biochem, 42, 401-408 (2007).
- [5] Peng, R.H., Xiong, A.S., Xue, Y., Fu, X.Y., Gao, F., Zhao, W., Tian, Y.S. and Yao, Q.H., “ Microbial biodegradation of polyaromatic hydrocarbons”. FEMS Microbiol. Rev, 32, 927–955 (2008).
- [6] Onduka, T,, Ojima, D., Kakuno, A., Mochida, K., Ito, K., Koyama, J. and Fujii, K., “Nitrated polycyclic aromatic hydrocarbons in the marine environment: acute toxicities for organisms at three trophic levels”. Jpn. J. Environ. Toxicol, 15,1-10 (2012).
- [7] Manzetti, S., “ Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties”. Environ. Chem. Lett. 10, 349-361 (2012).
- [8] Erdoğmuş, S.F., Korcan, S.E., Konuk, M., Güven, K. and Mutlu, M.B., “Aromatic hydrocarbon utilization ability of Chromohalobacter sp.” Ekoloji, 24 (94), 10-16 (2015).
- [9] Deka, H. and Lahkar, J., “Soil Bacteria for polycyclic aromatic hydrocarbon (PAH) remediation: Application
potentialities and limitations, Springer International Publishing Switzerland, K.R. Hakeem et al. (Eds.), Plant, Soil and Microbes, DOI: 10.1007/978-3-319-27455-3_15 (2016).
- [10] Dong, C., Bai, X., Sheng, H., Jiao, L., Zhou, H. and Shao, Z., “Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude”, Arc. Ocean Biogeosci, 12, 2163-2177 (2015).
- [11] Fathepure, B.Z., “Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments”, Front. Microbiol, 5,173 (2014).
- [12] Martins, L.F. and Peixoto, R.S. , “Biodegradation of petroleum hydrocarbons in hypersaline environments”, Braz. J. Microbiol, 43,865–872 (2012).
- [13] Borgne, S.L., Paniagua, D. and Vazquez-Duhalt, R., “ Biodegradation of organic pollutants by halophilic bacteria and archaea”. J.Mol. Microbiol. Biotechnol, 15, 74-92 (2008).
- [14] Dalvi, S., Nicholsona, C., Najarc, F., Roec, B.A., Canaanb, P., Hartsonb, S.D. and Fathepurea, B.Z., “ Isolation of a novel Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds at high salinity”, Appl. Environ. Microbiol. 80(21),6664–6676 (2014).
- [15] Dalvi, S., Youssef, N. H., Fathepure, B.Z., “ Microbial community structure analysis of a benzoate degrading halophilic archaeal enrichment”, Extremophiles, DOI: 10.1007/s00792-016-0823-0 (2016).
- [16] Wang, C.L., You, S.L. and Wang, S.L. “Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source”, Process. Biochem, 41, 1594-1601 (2006).
- [17] Lima, A.L.C., Farrington, J.W. and Reddy, C.M., “Combustion-derived polycyclic aromatic hydrocarbons in the environment-a review”, Environ. Forensics, 6, 109-131 (2005).
- [18] Keith, L.H. and Telliard, W.A., “Priority pollutants. I. A perspective view”, Environ. Sci. Technol, 13, 416-423(1979).
- [19] EPA, “Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons”. United States Environmental Protection Agency, EPA/600/R-93/089, (1993).
- [20] Liu, K., “Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fi red pilot FBC system”. J. Hazard. Mat, 84, 175-188(2001).
- [21] Oren, A., “Halophilic microorganism and their environments”, Kluwer Academic Publishers, Dordrecht, (2002).
- [22] Oren A., “Life at high salt concentrations”, Prokaryotes, 2, 263-282 (2006).
- [23] Mutlu, M.B. and Guven, K., “Bacterial diversity in Çamaltı saltern, Turkey”, Pol. J. Microbiol, 64 (1), 37-45 (2015).
- [24] Kushner, D., “The Halobacteriaceae. sp.” En C. Woese and Wolfe, S. (Eds.), The Bacteria, Academic Press, London, 8, 171-214 (1985).
- [25] Trigui, H., Masmoudi,S., Brochier-Armanet, C., Maalej, S. and Dukan, S., “Characterization of Halorubrum sfaxence sp. nov., A new halophilic archaeon isolated from the solar saltern of Sfax in Tunisia”, Int. J. Microbiol, DOI: 10.1155/2011/240191, (2011).
- [26] Ma, Y., Galinski, E.A., Grant, W.D., Oen, A. and Ventosa, A., “Halophiles: Life in saline environments”, Appl. Environ. Microbiol, 76, 6971-6981,(2010).
- [27] Arulazhagan, P. and Vasudevan, N., “Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons”. Mar. Poll. Bul, 58, 256-262, (2009).
- [28] Hough, D.W. and Danson, M.J., “ Archaebacteria: ancient organisms with commercial potential”. Lett. Appl. Microbiol, 9, 33-39, (1989).
- [29] Kunte, H.J., Trüper, G. and Stan-Lotter, H., “Halophilic microorganisms Astrobiology: The quest for the conditions of life”, Gerda Horneck, Christa Baumstark-Khan (Eds), Heidelberg: Springer-virlag, ISBN: 3-540-42101-7, (2001).
- [30] Mallick, S., Chatterjee, S. and Dutta, T.K., “A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strainPN/Y via meta-cleavage of 2-hydroxy-1-naphthoicacid: formationof trans-2,3-dioxo-5-(29-hydroxyphenyl)- penta-4-enoic acid”, Microbiol., 153, 2104-2115 (2007).
- [31] Lease, C.W.M., Bentham, R.H., Gaskin, S.E. and Juhasz, A.L., “Isolation and dentification of pyrene mineralizing Mycobacterium spp. from contaminated and uncontaminated sources”. Appl. Environ. Soil. Sci, DOI:101155/2011/409643, (2011).
- [32] Chang, C.H., Lee, J., Ko, B.G., Kim, S.K. and Chang, J.S., “Staphylococcus sp. KW-07 contains nahH gene encoding catechol 2,3-dioxygenase for phenanthrene degradation test in soil microcosm”, Int. Biodeter. Biodegr, 65, 198-203, (2011).
- [33] Cao, B., Geng, A. and Chee, L. “Induction of ortho-and meta-cleavage pathways in Pseudomonas in biodegradation of high benzoat concentration: MS identification of catabolic enzymes, genomics and proteomics”, Appl. Microbiol. Biotechnol, 81, 99-107,(2008).
- [34] Song, Y.J., “ Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter”. Korean. J. Microbiol. Biotechnol, 37, 333-339, (2009).
- [35] Tapilatu, Y.H., Grossi, V., Acquaviva, M., Militon, C., Bertrand, J.C. and Cuny, P., “Isolation of hydrocarbon degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France)”, Extremophiles, 14, 225-231,(2010).
- [36] Wu, M.L., Nie, M.Q., Wang, X.C. and Cao, W. “Analysis of phenanthrene biodegradation by using FITIR, UV and GC-MS”. Spectrochimica. Acta. Part. A, 75, 1047-1050, (2010).
- [37] Rockne, K.J. and Strand, S.E., “Anaerobic biodegradation of phenanthrene, naphthalene and biphenyl by a denitrifying enrichment culture”. Wat. Res, 35(1), 291-299, (2001).
- [38] Nicholson, C. A., “Biodegredasyon of petroleum hydrocarbons by halophilic and halotolerant microorganisms.” Oklahoma State University, Master Thesis, USA, 3-40, (2005).
- [39] Erdoğmuş, S. F., Mutlu, M.B., Korcan, S.E., Güven, K. and Konuk, M. “Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamaltı Saltern, Turkey”. Wat. Air. Soil. Pollut, 224(1449), DOI: 10.1007/s11270- 013-1449-9, (2013).
- [40] Kleinsteuber, S., Riis, V., Fetzer, I., Harms, H. and Müler, S., “ Population dynamics within a microbial consortium during growth on diesel fuel in saline environments”. Appl. Environ. Microbiol, 72, 3531-3542, (2006).
- [41] Young, C.H., Woo, S.H. and Park, J.M., “Effects of intermediate metabolites on phenanthrene”. J. Microbiol. Biotech, 16, 969-973,(2006).
- [42] Haddadi, A. And Shavandi, M., “Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil”, Int. Biodeter. Biodegr, 85, 29-34, (2013).
- [43] Açıkgöz, E. and Özcan, B., “Phenol biodegradation by halophilic archaea”, Int. Biodeter. Biodegr, 107,140-146, (2016).
- [44] Cuadros-Orellana, S., Pohlschroder, M. and Durrant, L.R., “Isolation and characterization of halophilic archaea able to grow in aromatic compounds”, Int. Biodeter. Biodegr, 57, 151-154, (2006).
- [45] Bugg, T.D.H., “Dioxygenase enzymes: catalytic mechanisms and chemical models”,Tetrahedron, 59, 7075-7101, (2003).
- [46] Dagley, S. , “A biochemical approach to some problems of environmental pollution”. Essays.Biochem, 11, 81-138, (1975).
- [47] Hayaishi, O., Katagiri, M. and Rothberg, S.J., “Mechanism of the pyrocatechase reaction”. J. Am. Chem. Soc, 77, 5450-5451, (1995).
- [48] Kojima, Y., Itada, N. and Hayaishi, O.J., “Metapyrocatachase: a new catechol-cleaving enzyme”. Biol. Chem, 236, 2223, (1961).
- [49] Guo, G., Fang, T., Wang, C., Huang, Y., Tian, F., Cui, Q. and Wang, H., “Isolation and characterization of two novel halotolerant catechol 2, 3-dioxygenases from a halophilic bacterial consortium”, Scı. Rep, DOI: 10.1038/srep17603, (2015).
- [50] Fairley, D.J., Boyd, D.R., Sharma, N.D., Allen, C.C.R., Morgan, P. and Larkin, M.J., “Aerobic metabolism of 4 hydroxybenzoic acidin archaea via an nusual pathway involving an intramolecular migration”, Appl. Environ. Microbiol, 68, 6246-6255, (2002).
- [51] Cerniglia, C.E., White, G.L. and Heflich, R.H., “Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons”, Arc. Microbiol., 143, 105-110, (1985).
- [52] Garcia, M.T., Ventosa, A. and Mellado, E., “Catabolic versatility of aromatic compound degrading halophilic bacteria”, FEMS Microbiol. Ecol, 54, 97-109, (2005).
- [53] Iwagami, S.G., “Protein purification and genetic characterization of a streptomycete protocatechuate 3,4 dioxygenase”. Master of Science, The University of British Colombia, Microbiology and Immunology, Columbia, (1999).
- [54] Saxena, P. and Thakur, I.S. “Purification and characterization of catechol 1,2 dioxygenase of Pseudumonas fluorescens for degradation of 4-chlorobenzoic acid”, Ind. J. Biotech, 4, 134-138, (2005).
- [55] Wang, C.L., You, S.L. and Wang, S.L., “Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source”. Process. Biochem, 41, 1594-1601, (2006).
- [56] Khemili-Talbi, S., Kebbouche-Gana, S., Akmoussi-Toumi, S., Angar, Y. and Gana, M.L., “Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity”, Extremophiles,19(6), DOI: 10.1007/s00792-015-0783-9, (2015).