Review
BibTex RIS Cite

Kalp Hastalıklarında Deney Hayvanı Modelleri

Year 2024, Volume: 26 Issue: S1, 79 - 86, 30.06.2024
https://doi.org/10.18678/dtfd.1489656

Abstract

Kalp hastalıkları, dünya çapında önemli bir ölüm ve hastalık yükünü oluşturur. Bu genel terim, koroner arter hastalığı, kalp yetmezliği, miyokard enfarktüsü ve kapakçık kalp hastalığı gibi çeşitli durumları kapsar. Bu hastalıkları anlama ve ele alma gerekliliği göz önüne alındığında, deneysel çalışmalar kaçınılmazdır. Deneysel hayvan modelleri, kalp hastalıklarının mekanizmalarını açıklamada vazgeçilmez araçlar olarak hizmet eder. Yeni tedaviler geliştirmek ve mevcut tedavilerin etkinliğini değerlendirmek için kilit öneme sahiptirler. Kalp hastalığı araştırmalarında yaygın olarak kullanılan hayvan modelleri arasında fareler, sıçanlar, tavşanlar, köpekler ve domuzlar bulunmaktadır. Her model, araştırmacıların kalp patolojisinin belirli yönlerini incelemesine ve kalp hastalığında rol alan karmaşık mekanizmaları çözmesine olanak tanıyan farklı avantajlar ve kısıtlamalar sunar. Bu kapsamlı incelemede, kalp hastalığı araştırmalarında kullanılan çeşitli hayvan modellerinin kısa bir özetinin sunulması amaçlanmıştır. Her bir modelin avantajları ve dezavantajları belirlenmiş, insan kalp hastalığını taklit ettikleri yönleri açıklanmış ve kullanımlarına olanak tanıyan önemli araştırma bulguları vurgulanmıştır. Bu bilgileri sentezleyerek, araştırmacıların ve klinisyenlerin kalp hastalıklarını araştırmak için mevcut çeşitli hayvan modellerine sağladığı değerli bilgilerle, bu rahatsız edici durumların anlaşılmasının ve tedavisinin geliştirilmesine katkıda bulunmak amaçlanmıştır.

References

  • Jalolov NN, Sobirov OG, Kabilzhonova SR, Imamova AO. The role of a healthy lifestyle in the prevention of myocardial infarction. Neo Sci Peer Rev J. 2023;9:8-14.
  • Beyazcicek E, Beyazcicek O. Experimental myocardial infarction models and current approaches. In: İnandiklioglu N, editor. Current studies in basic medical sciences. Lyon: Livre de Lyon; 2023. p.55-76.
  • Leong XF, Ng CY, Jaarin K. Animal models in cardiovascular research: hypertension and atherosclerosis. BioMed Res Int. 2015;2015:528757.
  • Milani-Nejad N, Janssen PM. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol Ther. 2014;141(3):235-49.
  • van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, et al. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2022;118(15):3016-51.
  • Bader M. Rat models of cardiovascular diseases. In: Anegon I, editor. Rat genomics: methods and protocols. Totowa, NJ: Humana Press; 2010. p.403-14.
  • Karasu Minareci E, Öğütman Ç. Experimental animal models for cardiovascular diseases. Turkiye Klinikleri J Cardiovasc Sci. 2011;23(1):65-74. Turkish.
  • van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical models of cardiac disease: a comprehensive overview for clinical scientists. Cardiovasc Eng Technol. 2024;[Epub ahead of print]. doi: doi:10.1007/s13239-023-00707-w.
  • Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res. 2019;115(13):1838-49.
  • Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun. 2007;31(Suppl 1):35-41.
  • Mouse Genome Sequencing Consortium; Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520-62.
  • Alonzo M, Delgado M, Cleetus C, Kumar SA, Thakur V, Chattopadhyay M, et al. Methods for histological characterization of cryo-induced myocardial infarction in a rat model. Acta Histochem. 2020;122(7):151624.
  • Feng Y, Hemmeryckx B, Frederix L, Lox M, Wu J, Heggermont W, et al. Monitoring reperfused myocardial infarction with delayed left ventricular systolic dysfunction in rabbits by longitudinal imaging. Quant Imaging Med Surg. 2018;8(8):754-69.
  • Genoves P, Arias-Mutis OJ, Parra G, Such-Miquel L, Zarzoso M, Del Canto I, et al. Development and long-term follow-up of an experimental model of myocardial infarction in rabbits. Animals (Basel). 2020;10(9):1576.
  • Kobayashi T, Ito T, Yamada S, Kuniyoshi N, Shiomi M. Electrocardiograms corresponding to the development of myocardial infarction in anesthetized WHHLMI rabbits (Oryctolagus cuniculus), an animal model for familial hypercholesterolemia. Comp Med. 2012;62(5):409-18.
  • Bryant SM, Kong CH, Watson J, Cannell MB, James AF, Orchard CH. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31.
  • Hodges MM, Zgheib C, Liechty KW. A large mammalian model of myocardial regeneration after myocardial infarction in fetal sheep. Adv Wound Care (New Rochelle). 2021;10(4):174-90.
  • Camacho P, Fan H, Liu Z, He JQ. Large mammalian animal models of heart disease. J Cardiovasc Dev Dis. 2016;3(4):30.
  • Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017;103(1):10-8.
  • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-64.
  • Liu J, Li X. Novel porcine models of myocardial ischemia/infarction-technical progress, modified electrocardiograms validating, and future application. In: Millis R, editor. Advances in electrocardiograms-clinical applications [Internet]. InTech; 2012. p.175-90.
  • Tang YP, Liu Y, Fan YJ, Zhao YY, Feng JQ, Liu Y. To develop a novel animal model of myocardial infarction: A research imperative. Animal Model Exp Med. 2018;1(1):36-9.
  • Johns TN, Olson BJ. Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg. 1954;140(5):675-82.
  • Akbay Çetin E, Onur M. A new modified myocardial infarction animal model. Cardiovasc Surg. 2013;1(3)69-71.
  • Yang XP, Sabbah HN, Liu YH, Sharov VG, Mascha EJ, Alwan I, et al. Ventriculographic evaluation in three rat models of cardiac dysfunction. Am J Physiol. 1993;265(6 Pt 2):H1946-52.
  • Beyazcicek E, Beyazcicek O. Protective effects of Lacticaseibacillus rhamnosus on isoprenaline-induced myocardial infarction in rats. J Appl Microbiol. 2023;134(1):lxac008.
  • Özgün E, Sayılan Özgün G, Usta U, Eskiocak S, Süer Gökmen S. Melatonin effects on serum paraoxonase and lactonase in experimental myocardial infarction. J Turk Clin Biochem. 2018;16(1):32-41. Turkish.
  • Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med. 2009;59(4):339-43.
  • Ahmed MI, Abdelrazek HMA, Moustafa YM, Alshawwa SZ, Mobasher MA, Abdel-Wahab BA, et al. Cardioprotective effect of flibanserin against isoproterenol-induced myocardial infarction in female rats: role of cardiac 5-HT2A receptor gene/5-HT/Ca2+ pathway. Pharmaceuticals (Basel). 2023;16(4):502.
  • Neto JC, Paulino ET, Rodrigues AKBF, da Silva JCG, Bernardino AC, dos Santos Oliveira JM, et al. Cardioprotective effect of hydroalcoholic extract of Brazilian red propolis against isoproterenol-induced myocardial infarction in rats. Phytomedicine Plus. 2022;2(1):100190.
  • Oglakci-Ilhan A, Kusat-Ol K, Uzuner K, Uysal O, Sogut I, Yucel F, et al. Effect of chronic alcohol consumption on myocardial apoptosis in the rat model of isoproterenol-induced myocardial injury and investigation on the cardioprotective role of calpain inhibitor 1. Drug Chem Toxicol. 2022;45(6):2727-38.
  • Hesari Z, Kafshdoozan K, Kokhaei P, Bagheri B, Ghaffari Khaligh S. Lactobacillus paracasei has anti-inflammatory effect on the heart failure induced by isoproterenol in rats. Iran J Toxicol. 2022;16(3):195-202.
  • Haleagrahara N, Varkkey J, Chakravarthi S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int J Mol Sci. 2011;12(10):7100-13.
  • Baraka SA, Tolba MF, Elsherbini DA, El-Naga RN, Awad AS, El-Demerdash E. Rosuvastatin and low-dose carvedilol combination protects against isoprenaline-induced myocardial infarction in rats: Role of PI3K/Akt/Nrf2/HO-1 signalling. Clin Exp Pharmacol Physiol. 2021;48(10):1358-70.
  • Chen Y, Peng L, Shi SQ, Guo G, Wen H. Boeravinone B alleviates gut dysbiosis during myocardial infarction-induced cardiotoxicity in rats. J Cell Mol Med. 2021;25(13):6403-16.
  • Kuloğlu T, Artaş G. The affects of adriamycin implementation to the immunreactivity of nesfatin-1 at rat heart tissue. Firat Med J. 2015;20(2):81-5.
  • Khonsary SA. Goodman and Gilman's: the pharmacological basis of therapeutics. Surg Neurol Int. 2023;14:91.
  • Quiles JL, Huertas JR, Battino M, Mataix J, Ramı́rez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180(1):79-95.
  • Aziz FTA, Sanad FA, Temraz A, El-Tantawy WH, Hassan MA. Study of cardioprotective activity of the methanolic extract of the aerial parts of Bauhinia madagascariensis compared to Bauhinia purpurea against adrenaline-induced myocardial toxicity in rats. Drug Chem Toxicol. 2022;45(5):2341-51.
  • Patil MP, Chaware VJ, Redasani VK. Potentiation of effects of propranolol and heparin by antioxidant in adrenaline induced myocardial infarction in rats. World J Pharm Res. 2022;11(12):1706-16.
  • Suzuki M, Asano H, Tanaka H, Usuda S. Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Jpn Circ J. 1999;63(11):900-5.
  • Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol. 1991;260(4 Pt 2):H1379-84.
  • Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol. 1999;31(3):513-22.
  • Ghouri IA, Kelly A, Salerno S, Garten K, Stolen T, Smith GL. Characterization of electrical activity in post-myocardial infarction scar tissue in rat hearts using multiphoton microscopy. Front Physiol. 2018;9:1454.
  • Rossi C, De Senarclens O, Perrenoud JJ. Acute myocardial infarction and electrically induced left bundle branch block: is a diagnosis possible? Heart. 2013;99(4):288-9.
  • Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994;94(2):623-30.
  • St Louis JD, Hughes GC, Kypson AP, DeGrado TR, Donovan CL, Coleman RE, et al. An experimental model of chronic myocardial hibernation. Ann Thorac Surg. 2000;69(5):1351-7.
  • Lee HW, Lee HC, Park JH, Kim BW, Ahn J, Kim JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model. Yonsei Med J. 2015;56(6):1522-9.
  • Li RK, Weisel RD, Mickle DA, Jia ZQ, Kim EJ, Sakai T, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg. 2000;119(1):62-8.
  • Hirata Y, Umemura K, Uematsu T, Nakashima M. An experimental myocardial infarction model in the rat and its properties. Jpn J Pharmacol. 1995;67(1):51-7.
  • Fang ZY, Lin R, Yuan BX, Yang GD, Liu Y, Zhang H. Tanshinone IIA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J Ethnopharmacol. 2008;115(2):217-22.
  • Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K, et al. Heart failure epidemiology and outcomes statistics: A report of the Heart Failure Society of America. J Card Fail. 2023;29(10):1412-51.
  • Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, et al. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res. 2012;111(1):131-50.
  • Torun N, Durmuş Altun G. Models of cardiovascular disease. Nucl Med Semin. 2019;5(1):96-101. Turkish.
  • Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, et al. Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest. 1994;93(6):2639-48.

Experimental Animal Models in Heart Disease

Year 2024, Volume: 26 Issue: S1, 79 - 86, 30.06.2024
https://doi.org/10.18678/dtfd.1489656

Abstract

Heart diseases constitute a significant global burden of mortality and morbidity. This encompassing word refers to a variety of illnesses, including coronary artery disease, heart failure, myocardial infarction, and valvular heart disease. Given the imperative need to comprehend and address these ailments, experimental studies are indispensable. Experimental animal models serve as indispensable tools in elucidating the mechanisms of heart disease. They are pivotal for developing novel treatments and assessing the efficacy of existing therapies. Among the commonly utilized animal models in heart disease research are mice, rats, rabbits, dogs, and pigs. Each model offers distinct advantages and limitations, allowing researchers to probe specific facets of cardiac pathology and unravel the intricate mechanisms involved in heart disease. In this comprehensive review, it was aimed to provide a succinct overview of the various animal models employed in heart disease research. The advantages and drawbacks of each model were delineated, the aspects of human heart disease they emulate were elucidated, and pivotal research findings facilitated by their utilization were highlighted. By synthesizing this information, it was the endeavor to provide researchers and clinicians with valuable insights into the diverse array of animal models available for investigating heart diseases, ultimately paving the way for enhanced understanding and treatment of these debilitating conditions.

References

  • Jalolov NN, Sobirov OG, Kabilzhonova SR, Imamova AO. The role of a healthy lifestyle in the prevention of myocardial infarction. Neo Sci Peer Rev J. 2023;9:8-14.
  • Beyazcicek E, Beyazcicek O. Experimental myocardial infarction models and current approaches. In: İnandiklioglu N, editor. Current studies in basic medical sciences. Lyon: Livre de Lyon; 2023. p.55-76.
  • Leong XF, Ng CY, Jaarin K. Animal models in cardiovascular research: hypertension and atherosclerosis. BioMed Res Int. 2015;2015:528757.
  • Milani-Nejad N, Janssen PM. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol Ther. 2014;141(3):235-49.
  • van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, et al. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2022;118(15):3016-51.
  • Bader M. Rat models of cardiovascular diseases. In: Anegon I, editor. Rat genomics: methods and protocols. Totowa, NJ: Humana Press; 2010. p.403-14.
  • Karasu Minareci E, Öğütman Ç. Experimental animal models for cardiovascular diseases. Turkiye Klinikleri J Cardiovasc Sci. 2011;23(1):65-74. Turkish.
  • van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical models of cardiac disease: a comprehensive overview for clinical scientists. Cardiovasc Eng Technol. 2024;[Epub ahead of print]. doi: doi:10.1007/s13239-023-00707-w.
  • Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res. 2019;115(13):1838-49.
  • Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun. 2007;31(Suppl 1):35-41.
  • Mouse Genome Sequencing Consortium; Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520-62.
  • Alonzo M, Delgado M, Cleetus C, Kumar SA, Thakur V, Chattopadhyay M, et al. Methods for histological characterization of cryo-induced myocardial infarction in a rat model. Acta Histochem. 2020;122(7):151624.
  • Feng Y, Hemmeryckx B, Frederix L, Lox M, Wu J, Heggermont W, et al. Monitoring reperfused myocardial infarction with delayed left ventricular systolic dysfunction in rabbits by longitudinal imaging. Quant Imaging Med Surg. 2018;8(8):754-69.
  • Genoves P, Arias-Mutis OJ, Parra G, Such-Miquel L, Zarzoso M, Del Canto I, et al. Development and long-term follow-up of an experimental model of myocardial infarction in rabbits. Animals (Basel). 2020;10(9):1576.
  • Kobayashi T, Ito T, Yamada S, Kuniyoshi N, Shiomi M. Electrocardiograms corresponding to the development of myocardial infarction in anesthetized WHHLMI rabbits (Oryctolagus cuniculus), an animal model for familial hypercholesterolemia. Comp Med. 2012;62(5):409-18.
  • Bryant SM, Kong CH, Watson J, Cannell MB, James AF, Orchard CH. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31.
  • Hodges MM, Zgheib C, Liechty KW. A large mammalian model of myocardial regeneration after myocardial infarction in fetal sheep. Adv Wound Care (New Rochelle). 2021;10(4):174-90.
  • Camacho P, Fan H, Liu Z, He JQ. Large mammalian animal models of heart disease. J Cardiovasc Dev Dis. 2016;3(4):30.
  • Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017;103(1):10-8.
  • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-64.
  • Liu J, Li X. Novel porcine models of myocardial ischemia/infarction-technical progress, modified electrocardiograms validating, and future application. In: Millis R, editor. Advances in electrocardiograms-clinical applications [Internet]. InTech; 2012. p.175-90.
  • Tang YP, Liu Y, Fan YJ, Zhao YY, Feng JQ, Liu Y. To develop a novel animal model of myocardial infarction: A research imperative. Animal Model Exp Med. 2018;1(1):36-9.
  • Johns TN, Olson BJ. Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg. 1954;140(5):675-82.
  • Akbay Çetin E, Onur M. A new modified myocardial infarction animal model. Cardiovasc Surg. 2013;1(3)69-71.
  • Yang XP, Sabbah HN, Liu YH, Sharov VG, Mascha EJ, Alwan I, et al. Ventriculographic evaluation in three rat models of cardiac dysfunction. Am J Physiol. 1993;265(6 Pt 2):H1946-52.
  • Beyazcicek E, Beyazcicek O. Protective effects of Lacticaseibacillus rhamnosus on isoprenaline-induced myocardial infarction in rats. J Appl Microbiol. 2023;134(1):lxac008.
  • Özgün E, Sayılan Özgün G, Usta U, Eskiocak S, Süer Gökmen S. Melatonin effects on serum paraoxonase and lactonase in experimental myocardial infarction. J Turk Clin Biochem. 2018;16(1):32-41. Turkish.
  • Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med. 2009;59(4):339-43.
  • Ahmed MI, Abdelrazek HMA, Moustafa YM, Alshawwa SZ, Mobasher MA, Abdel-Wahab BA, et al. Cardioprotective effect of flibanserin against isoproterenol-induced myocardial infarction in female rats: role of cardiac 5-HT2A receptor gene/5-HT/Ca2+ pathway. Pharmaceuticals (Basel). 2023;16(4):502.
  • Neto JC, Paulino ET, Rodrigues AKBF, da Silva JCG, Bernardino AC, dos Santos Oliveira JM, et al. Cardioprotective effect of hydroalcoholic extract of Brazilian red propolis against isoproterenol-induced myocardial infarction in rats. Phytomedicine Plus. 2022;2(1):100190.
  • Oglakci-Ilhan A, Kusat-Ol K, Uzuner K, Uysal O, Sogut I, Yucel F, et al. Effect of chronic alcohol consumption on myocardial apoptosis in the rat model of isoproterenol-induced myocardial injury and investigation on the cardioprotective role of calpain inhibitor 1. Drug Chem Toxicol. 2022;45(6):2727-38.
  • Hesari Z, Kafshdoozan K, Kokhaei P, Bagheri B, Ghaffari Khaligh S. Lactobacillus paracasei has anti-inflammatory effect on the heart failure induced by isoproterenol in rats. Iran J Toxicol. 2022;16(3):195-202.
  • Haleagrahara N, Varkkey J, Chakravarthi S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int J Mol Sci. 2011;12(10):7100-13.
  • Baraka SA, Tolba MF, Elsherbini DA, El-Naga RN, Awad AS, El-Demerdash E. Rosuvastatin and low-dose carvedilol combination protects against isoprenaline-induced myocardial infarction in rats: Role of PI3K/Akt/Nrf2/HO-1 signalling. Clin Exp Pharmacol Physiol. 2021;48(10):1358-70.
  • Chen Y, Peng L, Shi SQ, Guo G, Wen H. Boeravinone B alleviates gut dysbiosis during myocardial infarction-induced cardiotoxicity in rats. J Cell Mol Med. 2021;25(13):6403-16.
  • Kuloğlu T, Artaş G. The affects of adriamycin implementation to the immunreactivity of nesfatin-1 at rat heart tissue. Firat Med J. 2015;20(2):81-5.
  • Khonsary SA. Goodman and Gilman's: the pharmacological basis of therapeutics. Surg Neurol Int. 2023;14:91.
  • Quiles JL, Huertas JR, Battino M, Mataix J, Ramı́rez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180(1):79-95.
  • Aziz FTA, Sanad FA, Temraz A, El-Tantawy WH, Hassan MA. Study of cardioprotective activity of the methanolic extract of the aerial parts of Bauhinia madagascariensis compared to Bauhinia purpurea against adrenaline-induced myocardial toxicity in rats. Drug Chem Toxicol. 2022;45(5):2341-51.
  • Patil MP, Chaware VJ, Redasani VK. Potentiation of effects of propranolol and heparin by antioxidant in adrenaline induced myocardial infarction in rats. World J Pharm Res. 2022;11(12):1706-16.
  • Suzuki M, Asano H, Tanaka H, Usuda S. Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Jpn Circ J. 1999;63(11):900-5.
  • Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol. 1991;260(4 Pt 2):H1379-84.
  • Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol. 1999;31(3):513-22.
  • Ghouri IA, Kelly A, Salerno S, Garten K, Stolen T, Smith GL. Characterization of electrical activity in post-myocardial infarction scar tissue in rat hearts using multiphoton microscopy. Front Physiol. 2018;9:1454.
  • Rossi C, De Senarclens O, Perrenoud JJ. Acute myocardial infarction and electrically induced left bundle branch block: is a diagnosis possible? Heart. 2013;99(4):288-9.
  • Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994;94(2):623-30.
  • St Louis JD, Hughes GC, Kypson AP, DeGrado TR, Donovan CL, Coleman RE, et al. An experimental model of chronic myocardial hibernation. Ann Thorac Surg. 2000;69(5):1351-7.
  • Lee HW, Lee HC, Park JH, Kim BW, Ahn J, Kim JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model. Yonsei Med J. 2015;56(6):1522-9.
  • Li RK, Weisel RD, Mickle DA, Jia ZQ, Kim EJ, Sakai T, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg. 2000;119(1):62-8.
  • Hirata Y, Umemura K, Uematsu T, Nakashima M. An experimental myocardial infarction model in the rat and its properties. Jpn J Pharmacol. 1995;67(1):51-7.
  • Fang ZY, Lin R, Yuan BX, Yang GD, Liu Y, Zhang H. Tanshinone IIA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. J Ethnopharmacol. 2008;115(2):217-22.
  • Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K, et al. Heart failure epidemiology and outcomes statistics: A report of the Heart Failure Society of America. J Card Fail. 2023;29(10):1412-51.
  • Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, et al. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res. 2012;111(1):131-50.
  • Torun N, Durmuş Altun G. Models of cardiovascular disease. Nucl Med Semin. 2019;5(1):96-101. Turkish.
  • Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, et al. Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest. 1994;93(6):2639-48.
There are 55 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Invited Review
Authors

Ali Gök 0000-0003-4103-9537

Ersin Beyazçiçek

Early Pub Date May 24, 2024
Publication Date June 30, 2024
Submission Date March 6, 2024
Acceptance Date April 24, 2024
Published in Issue Year 2024 Volume: 26 Issue: S1

Cite

APA Gök, A., & Beyazçiçek, E. (2024). Experimental Animal Models in Heart Disease. Duzce Medical Journal, 26(S1), 79-86. https://doi.org/10.18678/dtfd.1489656
AMA Gök A, Beyazçiçek E. Experimental Animal Models in Heart Disease. Duzce Med J. June 2024;26(S1):79-86. doi:10.18678/dtfd.1489656
Chicago Gök, Ali, and Ersin Beyazçiçek. “Experimental Animal Models in Heart Disease”. Duzce Medical Journal 26, no. S1 (June 2024): 79-86. https://doi.org/10.18678/dtfd.1489656.
EndNote Gök A, Beyazçiçek E (June 1, 2024) Experimental Animal Models in Heart Disease. Duzce Medical Journal 26 S1 79–86.
IEEE A. Gök and E. Beyazçiçek, “Experimental Animal Models in Heart Disease”, Duzce Med J, vol. 26, no. S1, pp. 79–86, 2024, doi: 10.18678/dtfd.1489656.
ISNAD Gök, Ali - Beyazçiçek, Ersin. “Experimental Animal Models in Heart Disease”. Duzce Medical Journal 26/S1 (June 2024), 79-86. https://doi.org/10.18678/dtfd.1489656.
JAMA Gök A, Beyazçiçek E. Experimental Animal Models in Heart Disease. Duzce Med J. 2024;26:79–86.
MLA Gök, Ali and Ersin Beyazçiçek. “Experimental Animal Models in Heart Disease”. Duzce Medical Journal, vol. 26, no. S1, 2024, pp. 79-86, doi:10.18678/dtfd.1489656.
Vancouver Gök A, Beyazçiçek E. Experimental Animal Models in Heart Disease. Duzce Med J. 2024;26(S1):79-86.