Review
BibTex RIS Cite

Deneysel Nörolojik Hastalık Modellemelerinde Anestezi Uygulamaları

Year 2024, Volume: 26 Issue: S1, 30 - 35, 30.06.2024
https://doi.org/10.18678/dtfd.1504037

Abstract

Beynin hangi moleküler mekanizmalar kullanarak nörolojik hastalıkların oluştuğu ve nasıl tedavi edilebileceği kapsamındaki sinir bilim, multidisipliner yaklaşımlar ile erken tanı ve yeni tedavi geliştirmek üzere yüksek bütçeli araştırmaların konusu olarak güncelliğini korumaktadır. Bu amaçla nörolojik in vivo deneysel modellerde uygun modeli doğru metot ve anestezi ile oluşturmak doğru sonuçları elde etmenin ve hayvan refahını sağlamanın en önemli basamaklarıdır. Kemirgenlerde anesteziyi yönetmek adına anesteziklerin fizyolojik özelliklerini tanımak ve risklerine hakim olmak deneysel prosedürleri güçlendirecektir. Enjekte edilebilir anesteziklerden ketamin, ksilazin ve pentobarbital genel anestezi için kısa cerrahi prosedürlerde en sık tercih edilen ajanlardır. İzofluran ve sevofluran sıvı olduklarından bir vaporizer ile verilen inhaler anesteziklerdendir. İnhale anesteziklerin hızlı indüksiyon ve hızlı çekilme gibi önemli avantajları sinirbilim çalışmalarında inhaler anestezikleri öne çıkarmaktadır. Bu derlemede kemirgenlerde sık kullanılan anestezik ajanların özellikleri, kullanım şekilleri ve hangi modelde tercih edildiğinden bahsedilecektir. Bu amaçla epilepsi, Alzeimer hastalığı, iskemi-reperfüzyon hasarı, travmatik beyin hasarı, iskemik inme, deneysel otoimmun ensefalomyelitis, oftalmik cerrahi prosedürler ve yan etkileri gibi hayvan modellerinde uygun anesteziklerin seçimi gözden geçirilecektir.

References

  • Kumar J, Patel T, Sugandh F, Dev J, Kumar U, Adeeb M, et al. Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: a narrative review. Cureus. 2023;15(7):e41914.
  • Amunts K, Axer M, Banerjee S, Bitsch L, Bjaalie JG, Brauner P, et al. The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing. Imaging Neurosci. 2024;2:1-35.
  • Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg. 2022;63(2 Suppl 3):E255-66.
  • Oh SS, Narver HL. Mouse and rat anesthesia and analgesia. Curr Protoc. 2024;4(2):e995.
  • Davis JA. Mouse and rat anesthesia and analgesia. Curr Protoc Neurosci. 2008;Appendix 4:Appendix 4B.
  • Jaber SM, Hankenson FC, Heng K, McKinstry-Wu A, Kelz MB, Marx JO. Dose regimens, variability, and complications associated with using repeat-bolus dosing to extend a surgical plane of anesthesia in laboratory mice. J Am Assoc Lab Anim Sci. 2014;53(6):684-91.
  • Bennett K, Lewis K. Sedation and anesthesia in rodents. Vet Clin North Am Exot Anim Pract. 2022;25(1):211-55.
  • Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62(1-2):238-73.
  • Johnson AB, Sadiq NM. Pentobarbital. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front Hum Neurosci. 2016;10:612.
  • Papudesi BN, Malayala SV, Regina AC. Xylazine toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Akter MA, Yesmin N, Talukder MBA, Alam MM. Evaluation of anaesthesia with xylazine-ketamine and xylazine-fentanyl-ketamine in rabbits: A comparative study. J Adv VetBio Sci Tech. 2023;8(1):38-46.
  • Yilmaz A, Hösükler E, Kaymaz A, Üçgül AY, Erkol ZZ. Evaluation of eye and serum findings in different waters in rabbits by drowning and submersion modeling. Turk J Med Sci. 2023;54(1):42-51.
  • Karnina R, Arif SK, Hatta M, Bukhari A. Molecular mechanisms of lidocaine. Ann Med Surg (Lond). 2021;69:102733.
  • Hohlbaum K, Bert B, Dietze S, Palme R, Fink H, Thöne-Reineke C. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice-Assessing the degree of distress. PLoS One. 2017;12(6):e0179588.
  • Garcia PS, Kolesky SE, Jenkins A. General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol. 2010;8(1):2-9.
  • Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 2018;57(12):1539-58.
  • Miller AL, Theodore D, Widrich J. Inhalational anesthetic. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Özer AB, Özer S. Effects of lycopene supplementation on morphological changes induced by sevoflurane in rats. FÜ Sağ Bil Tıp Derg. 2007;21(3):103-8. Turkish.
  • Hunter CL, Yang P, Renner DM, Kennedy L. Effects of isoflurane anesthesia on C57BL/6J pups after cervical dislocation of dams. J Am Assoc Lab Anim Sci. 2023;62(5):449-52.
  • Gauthier A, Girard F, Boudreault D, Ruel M, Todorov A. Sevoflurane provides faster recovery and postoperative neurological assessment than isoflurane in long-duration neurosurgical cases. Anesth Analg. 2002;95(5):1384-8.
  • Godet G, Watremez C, El Kettani C, Soriano C, Coriat P. A comparison of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia in patients undergoing carotid surgery: a quality of anesthesia and recovery profile. Anesth Analg. 2001;93(3):560-5.
  • Sprung J, Warner DO, Knopman DS, Petersen RC, Mielke MM, Jack CR Jr, et al. Exposure to surgery with general anaesthesia during adult life is not associated with increased brain amyloid deposition in older adults. Br J Anaesth. 2020;124(5):594-602.
  • Patel D, Lunn A, Smith AD, Lehmann DJ, Dorrington KL. Cognitive decline in the elderly after surgery and anaesthesia: Results from the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Anaesthesia. 2016;71(10):1144-52.
  • Berger M, Schenning KJ, Brown CH 4th, Deiner SG, Whittington RA, Eckenhoff RG, et al. Best practices for postoperative brain health: Recommendations from the fifth international perioperative neurotoxicity working group. Anesth Analg. 2018;127(6):1406-13.
  • Zhao X, Wang X. Anesthesia-induced epilepsy: causes and treatment. Expert Rev Neurother. 2014;14(9):1099-113.
  • Maranhão MV, Gomes EA, de Carvalho PE. Epilepsy and anesthesia. Rev Bras Anestesiol. 2011;61(2):232-41.
  • Cho C, Michailidis V, Lecker I, Collymore C, Hanwell D, Loka M, et al. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci Rep. 2019;9(1):359.
  • Bielefeld P, Sierra A, Encinas JM, Maletic‐Savatic M, Anderson A, Fitzsimons CP. A standardized protocol for stereotaxic intrahippocampal administration of kainic acid combined with electroencephalographic seizure monitoring in mice. Front Neurosci. 2017;11:160.
  • Mostany R, Portera‐Cailliau C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. 2008;12:680.
  • Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther. 2023;8(1):248.
  • Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, Wei W, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004;101(3):703-9.
  • Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z. Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology. 2010;112(6):1404-16.
  • Perucho J, Rubio I, Casarejos MJ, Gomez A, Rodriguez-Navarro JA, Solano RM, et al. Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1245-57.
  • Bratke S, Schmid S, Ulm B, Jungwirth B, Blobner M, Borgstedt L. Genotype- and sex-specific changes in vital parameters during isoflurane anesthesia in a mouse model of Alzheimer’s disease. Front Med (Lausanne). 2024;11:1342752.
  • Chen J, Yang Y, Shen L, Ding W, Chen X, Wu E, et al. Hypoxic preconditioning augments the therapeutic efficacy of bone marrow stromal cells in a rat ischemic stroke model. Cell Mol Neurobiol. 2017;37(6):1115-29.
  • Gong L, Tang Y, An R, Lin M, Chen L, Du J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis. 2017;8(10):e3080.
  • Kraft P, De Meyer SF, Kleinschnitz C. Next-generation antithrombotics in ischemic stroke: preclinical perspective on ‘bleeding-free antithrombosis’. J Cereb Blood Flow Metab. 2012;32(10):1831-40.
  • Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, Bayat G, Davoodian N, Sharif-Paghaleh E, et al. Anesthesia and analgesia for common research models of adult mice. Lab Anim Res. 2022;38(1):40.
  • Chi OZ, Mellender SJ, Kiss GK, Liu X, Weiss HR. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia. Brain Res Bull. 2017;131:1-6.
  • Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37(4):742-8; discussion 748-9.
  • Braeuninger S, Kleinschnitz C. Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Trans Stroke Med. 2009;1:8.
  • Wang X, Chang L, Tan Y, Qu Y, Shan J, Hashimoto K. (R)-ketamine ameliorates the progression of experimental autoimmune encephalomyelitis in mice. Brain Res Bull. 2021;177:316-23.
  • Polak PE, Dull RO, Kalinin S, Sharp AJ, Ripper R, Weinberg G, et al. Sevoflurane reduces clinical disease in a mouse model of multiple sclerosis. J Neuroinflammation. 2012;9:272.
  • Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987-1048.
  • Ozaydin D, Bektasoglu PK, Koyuncuoglu T, Ozkaya SC, Koroglu AK, Akakin D, et al. Anti-inflammatory, antioxidant and neuroprotective effects of niacin on mild traumatic brain injury in rats. Turk Neurosurg. 2023;33(6):1028-37.
  • Statler KD, Janesko KL, Melick JA, Clark RS, Jenkins LW, Kochanek PM. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats. Brain Res. 2003;994(1):37-43.
  • Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216-24.
  • Kahveci FS, Kahveci N, Alkan T, Goren B, Korfali E, Ozluk K. Propofol versus isoflurane anesthesia under hypothermic conditions: effects on intracranial pressure and local cerebral blood flow after diffuse traumatic brain injury in the rat. Surg Neurol. 2001;56(3):206-14.
  • He H, Liu W, Zhou Y, Liu Y, Weng P, Li Y, et al. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des Devel Ther. 2018;12:629-38.
  • Hui C, Tadi P, Khan Suheb MZ, Patti L. Ischemic stroke. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Hoffmann U, Sheng H, Ayata C, Warner DS. Anesthesia in experimental stroke research. Transl Stroke Res. 2016;7(5):358-67.
  • Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001;95(3):756-65.
  • Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92(3):806-12.
  • Tang H, Gamdzyk M, Huang L, Gao L, Lenahan C, Kang R, et al. Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Exp Neurol. 2020;330:113359.
  • Li Y, Li J, Yu Q, Ji L, Peng B. METTL14 regulates microglia/macrophage polarization and NLRP3 inflammasome activation after ischemic stroke by the KAT3B-STING axis. Neurobiol Dis. 2023;185:106253.
  • Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, et al. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology. 2023;21(1):70.
  • Xiong Z, Chang L, Qu Y, Pu Y, Wang S, Fujita Y, et al. Neuronal brain injury after cerebral ischemic stroke is ameliorated after subsequent administration of (R)-ketamine, but not (S)-ketamine. Pharmacol Biochem Behav. 2020;191:172904.
  • Sun YJ, Lin CH, Wu MR, Lee SH, Yang J, Kunchur CR, et al. An intravitreal implant injection method for sustained drug delivery into mouse eyes. Cell Rep Methods. 2021;1(8):100125.
  • Qiu Y, Yang H, Lei B. Effects of three commonly used anesthetics on intraocular pressure in mouse. Curr Eye Res. 2014;39(4):365-9.
  • Tkatchenko TV, Tkatchenko AV. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice. J Neurosci Methods. 2010;193(1):67-71.
  • Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med. 2005;55(2):175-82.
  • Aerts J, Nys J, Arckens L. A highly reproducible and straightforward method to perform in vivo ocular enucleation in the mouse after eye opening. J Vis Exp. 2014;92:e51936.
  • Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. Retro-orbital injections in mice. Lab Anim (NY). 2011;40(5):155-60.

Anesthesia Applications In Experimental Neurological Disease Modeling

Year 2024, Volume: 26 Issue: S1, 30 - 35, 30.06.2024
https://doi.org/10.18678/dtfd.1504037

Abstract

Neuroscience, which covers the molecular mechanisms employed by the brain to cause neurological diseases and how they can be treated, remains current as the subject of high-budget investigations to develop early diagnosis and new treatment modalities with multidisciplinary approaches. For this purpose, creating the appropriate model with the correct modality and anesthesia in neurological in vivo experimental models is the most important phase to obtain accurate results and ensure animal welfare. To manage anesthesia in rodents, knowing the physiological characteristics of anesthetics and their risks will strengthen experimental procedures. Among the injectable anesthetics, ketamine, xylazine, and pentobarbital are the most frequently preferred agents for general anesthesia in short surgical procedures. Isoflurane and sevoflurane are inhaler anesthetics that are administered through a vaporizer because they are liquids. Important advantages of inhaled anesthetics, such as rapid induction and rapid withdrawal, make inhaled anesthetics stand out in neuroscience studies. In this review, the properties of frequently used anesthetic agents in rodents, their usage methods, and which model they are preferred will be discussed. For this purpose, the selection of appropriate anesthetics in animal models such as epilepsy, Alzheimer's disease, ischemia-reperfusion injury, traumatic brain injury, ischemic stroke, experimental autoimmune encephalomyelitis, and ophthalmic surgical procedures and their side effects will be reviewed.

References

  • Kumar J, Patel T, Sugandh F, Dev J, Kumar U, Adeeb M, et al. Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: a narrative review. Cureus. 2023;15(7):e41914.
  • Amunts K, Axer M, Banerjee S, Bitsch L, Bjaalie JG, Brauner P, et al. The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing. Imaging Neurosci. 2024;2:1-35.
  • Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg. 2022;63(2 Suppl 3):E255-66.
  • Oh SS, Narver HL. Mouse and rat anesthesia and analgesia. Curr Protoc. 2024;4(2):e995.
  • Davis JA. Mouse and rat anesthesia and analgesia. Curr Protoc Neurosci. 2008;Appendix 4:Appendix 4B.
  • Jaber SM, Hankenson FC, Heng K, McKinstry-Wu A, Kelz MB, Marx JO. Dose regimens, variability, and complications associated with using repeat-bolus dosing to extend a surgical plane of anesthesia in laboratory mice. J Am Assoc Lab Anim Sci. 2014;53(6):684-91.
  • Bennett K, Lewis K. Sedation and anesthesia in rodents. Vet Clin North Am Exot Anim Pract. 2022;25(1):211-55.
  • Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62(1-2):238-73.
  • Johnson AB, Sadiq NM. Pentobarbital. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front Hum Neurosci. 2016;10:612.
  • Papudesi BN, Malayala SV, Regina AC. Xylazine toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Akter MA, Yesmin N, Talukder MBA, Alam MM. Evaluation of anaesthesia with xylazine-ketamine and xylazine-fentanyl-ketamine in rabbits: A comparative study. J Adv VetBio Sci Tech. 2023;8(1):38-46.
  • Yilmaz A, Hösükler E, Kaymaz A, Üçgül AY, Erkol ZZ. Evaluation of eye and serum findings in different waters in rabbits by drowning and submersion modeling. Turk J Med Sci. 2023;54(1):42-51.
  • Karnina R, Arif SK, Hatta M, Bukhari A. Molecular mechanisms of lidocaine. Ann Med Surg (Lond). 2021;69:102733.
  • Hohlbaum K, Bert B, Dietze S, Palme R, Fink H, Thöne-Reineke C. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice-Assessing the degree of distress. PLoS One. 2017;12(6):e0179588.
  • Garcia PS, Kolesky SE, Jenkins A. General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol. 2010;8(1):2-9.
  • Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 2018;57(12):1539-58.
  • Miller AL, Theodore D, Widrich J. Inhalational anesthetic. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Özer AB, Özer S. Effects of lycopene supplementation on morphological changes induced by sevoflurane in rats. FÜ Sağ Bil Tıp Derg. 2007;21(3):103-8. Turkish.
  • Hunter CL, Yang P, Renner DM, Kennedy L. Effects of isoflurane anesthesia on C57BL/6J pups after cervical dislocation of dams. J Am Assoc Lab Anim Sci. 2023;62(5):449-52.
  • Gauthier A, Girard F, Boudreault D, Ruel M, Todorov A. Sevoflurane provides faster recovery and postoperative neurological assessment than isoflurane in long-duration neurosurgical cases. Anesth Analg. 2002;95(5):1384-8.
  • Godet G, Watremez C, El Kettani C, Soriano C, Coriat P. A comparison of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia in patients undergoing carotid surgery: a quality of anesthesia and recovery profile. Anesth Analg. 2001;93(3):560-5.
  • Sprung J, Warner DO, Knopman DS, Petersen RC, Mielke MM, Jack CR Jr, et al. Exposure to surgery with general anaesthesia during adult life is not associated with increased brain amyloid deposition in older adults. Br J Anaesth. 2020;124(5):594-602.
  • Patel D, Lunn A, Smith AD, Lehmann DJ, Dorrington KL. Cognitive decline in the elderly after surgery and anaesthesia: Results from the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Anaesthesia. 2016;71(10):1144-52.
  • Berger M, Schenning KJ, Brown CH 4th, Deiner SG, Whittington RA, Eckenhoff RG, et al. Best practices for postoperative brain health: Recommendations from the fifth international perioperative neurotoxicity working group. Anesth Analg. 2018;127(6):1406-13.
  • Zhao X, Wang X. Anesthesia-induced epilepsy: causes and treatment. Expert Rev Neurother. 2014;14(9):1099-113.
  • Maranhão MV, Gomes EA, de Carvalho PE. Epilepsy and anesthesia. Rev Bras Anestesiol. 2011;61(2):232-41.
  • Cho C, Michailidis V, Lecker I, Collymore C, Hanwell D, Loka M, et al. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci Rep. 2019;9(1):359.
  • Bielefeld P, Sierra A, Encinas JM, Maletic‐Savatic M, Anderson A, Fitzsimons CP. A standardized protocol for stereotaxic intrahippocampal administration of kainic acid combined with electroencephalographic seizure monitoring in mice. Front Neurosci. 2017;11:160.
  • Mostany R, Portera‐Cailliau C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. 2008;12:680.
  • Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther. 2023;8(1):248.
  • Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, Wei W, et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004;101(3):703-9.
  • Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z. Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology. 2010;112(6):1404-16.
  • Perucho J, Rubio I, Casarejos MJ, Gomez A, Rodriguez-Navarro JA, Solano RM, et al. Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1245-57.
  • Bratke S, Schmid S, Ulm B, Jungwirth B, Blobner M, Borgstedt L. Genotype- and sex-specific changes in vital parameters during isoflurane anesthesia in a mouse model of Alzheimer’s disease. Front Med (Lausanne). 2024;11:1342752.
  • Chen J, Yang Y, Shen L, Ding W, Chen X, Wu E, et al. Hypoxic preconditioning augments the therapeutic efficacy of bone marrow stromal cells in a rat ischemic stroke model. Cell Mol Neurobiol. 2017;37(6):1115-29.
  • Gong L, Tang Y, An R, Lin M, Chen L, Du J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis. 2017;8(10):e3080.
  • Kraft P, De Meyer SF, Kleinschnitz C. Next-generation antithrombotics in ischemic stroke: preclinical perspective on ‘bleeding-free antithrombosis’. J Cereb Blood Flow Metab. 2012;32(10):1831-40.
  • Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, Bayat G, Davoodian N, Sharif-Paghaleh E, et al. Anesthesia and analgesia for common research models of adult mice. Lab Anim Res. 2022;38(1):40.
  • Chi OZ, Mellender SJ, Kiss GK, Liu X, Weiss HR. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia. Brain Res Bull. 2017;131:1-6.
  • Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37(4):742-8; discussion 748-9.
  • Braeuninger S, Kleinschnitz C. Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Trans Stroke Med. 2009;1:8.
  • Wang X, Chang L, Tan Y, Qu Y, Shan J, Hashimoto K. (R)-ketamine ameliorates the progression of experimental autoimmune encephalomyelitis in mice. Brain Res Bull. 2021;177:316-23.
  • Polak PE, Dull RO, Kalinin S, Sharp AJ, Ripper R, Weinberg G, et al. Sevoflurane reduces clinical disease in a mouse model of multiple sclerosis. J Neuroinflammation. 2012;9:272.
  • Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987-1048.
  • Ozaydin D, Bektasoglu PK, Koyuncuoglu T, Ozkaya SC, Koroglu AK, Akakin D, et al. Anti-inflammatory, antioxidant and neuroprotective effects of niacin on mild traumatic brain injury in rats. Turk Neurosurg. 2023;33(6):1028-37.
  • Statler KD, Janesko KL, Melick JA, Clark RS, Jenkins LW, Kochanek PM. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats. Brain Res. 2003;994(1):37-43.
  • Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216-24.
  • Kahveci FS, Kahveci N, Alkan T, Goren B, Korfali E, Ozluk K. Propofol versus isoflurane anesthesia under hypothermic conditions: effects on intracranial pressure and local cerebral blood flow after diffuse traumatic brain injury in the rat. Surg Neurol. 2001;56(3):206-14.
  • He H, Liu W, Zhou Y, Liu Y, Weng P, Li Y, et al. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des Devel Ther. 2018;12:629-38.
  • Hui C, Tadi P, Khan Suheb MZ, Patti L. Ischemic stroke. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Hoffmann U, Sheng H, Ayata C, Warner DS. Anesthesia in experimental stroke research. Transl Stroke Res. 2016;7(5):358-67.
  • Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001;95(3):756-65.
  • Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92(3):806-12.
  • Tang H, Gamdzyk M, Huang L, Gao L, Lenahan C, Kang R, et al. Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Exp Neurol. 2020;330:113359.
  • Li Y, Li J, Yu Q, Ji L, Peng B. METTL14 regulates microglia/macrophage polarization and NLRP3 inflammasome activation after ischemic stroke by the KAT3B-STING axis. Neurobiol Dis. 2023;185:106253.
  • Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, et al. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology. 2023;21(1):70.
  • Xiong Z, Chang L, Qu Y, Pu Y, Wang S, Fujita Y, et al. Neuronal brain injury after cerebral ischemic stroke is ameliorated after subsequent administration of (R)-ketamine, but not (S)-ketamine. Pharmacol Biochem Behav. 2020;191:172904.
  • Sun YJ, Lin CH, Wu MR, Lee SH, Yang J, Kunchur CR, et al. An intravitreal implant injection method for sustained drug delivery into mouse eyes. Cell Rep Methods. 2021;1(8):100125.
  • Qiu Y, Yang H, Lei B. Effects of three commonly used anesthetics on intraocular pressure in mouse. Curr Eye Res. 2014;39(4):365-9.
  • Tkatchenko TV, Tkatchenko AV. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice. J Neurosci Methods. 2010;193(1):67-71.
  • Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med. 2005;55(2):175-82.
  • Aerts J, Nys J, Arckens L. A highly reproducible and straightforward method to perform in vivo ocular enucleation in the mouse after eye opening. J Vis Exp. 2014;92:e51936.
  • Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. Retro-orbital injections in mice. Lab Anim (NY). 2011;40(5):155-60.
There are 64 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Invited Review
Authors

Ayhan Çetinkaya 0000-0002-8212-7149

Hümeyra Çelik 0000-0002-3394-2438

Early Pub Date June 24, 2024
Publication Date June 30, 2024
Submission Date May 6, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024 Volume: 26 Issue: S1

Cite

APA Çetinkaya, A., & Çelik, H. (2024). Anesthesia Applications In Experimental Neurological Disease Modeling. Duzce Medical Journal, 26(S1), 30-35. https://doi.org/10.18678/dtfd.1504037
AMA Çetinkaya A, Çelik H. Anesthesia Applications In Experimental Neurological Disease Modeling. Duzce Med J. June 2024;26(S1):30-35. doi:10.18678/dtfd.1504037
Chicago Çetinkaya, Ayhan, and Hümeyra Çelik. “Anesthesia Applications In Experimental Neurological Disease Modeling”. Duzce Medical Journal 26, no. S1 (June 2024): 30-35. https://doi.org/10.18678/dtfd.1504037.
EndNote Çetinkaya A, Çelik H (June 1, 2024) Anesthesia Applications In Experimental Neurological Disease Modeling. Duzce Medical Journal 26 S1 30–35.
IEEE A. Çetinkaya and H. Çelik, “Anesthesia Applications In Experimental Neurological Disease Modeling”, Duzce Med J, vol. 26, no. S1, pp. 30–35, 2024, doi: 10.18678/dtfd.1504037.
ISNAD Çetinkaya, Ayhan - Çelik, Hümeyra. “Anesthesia Applications In Experimental Neurological Disease Modeling”. Duzce Medical Journal 26/S1 (June 2024), 30-35. https://doi.org/10.18678/dtfd.1504037.
JAMA Çetinkaya A, Çelik H. Anesthesia Applications In Experimental Neurological Disease Modeling. Duzce Med J. 2024;26:30–35.
MLA Çetinkaya, Ayhan and Hümeyra Çelik. “Anesthesia Applications In Experimental Neurological Disease Modeling”. Duzce Medical Journal, vol. 26, no. S1, 2024, pp. 30-35, doi:10.18678/dtfd.1504037.
Vancouver Çetinkaya A, Çelik H. Anesthesia Applications In Experimental Neurological Disease Modeling. Duzce Med J. 2024;26(S1):30-5.