Review
BibTex RIS Cite

Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi

Year 2018, Volume: 6 Issue: 1, 108 - 122, 31.01.2018
https://doi.org/10.29130/dubited.347176

Abstract


Bu çalışmada farklılaşma özelliği olmayan (spor
yada kist oluşturamayan) bakterilerin stres koşulları altında yaşamlarını devam
ettirebilmek amacı ile oluşturdukları bir yaşam stratejisi olan dormansi durumu
incelenmiştir. Canlı Fakat Kültürü Yapılamayan Durum (VBNC) hipotezi metabolik
olarak aktif fakat bilinen laboratuar metodları ile kültüre edilemeyen
bakteriyal hücrelerin girmiş olduğu bir bölünememe durumunu tanımlamaktadır. Bu
durum nedeni ile doğal ortamlardan bakterilerin izolasyonları ve sayımlarının
yapılmasında büyük problemler vardır. Ayrıca henüz bütün bakterilere ve bütün
şartlarda uygulanabilecek geleneksel bir metod geliştirilememiştir. İnsan
sağlığı açısından oldukça önemli olan bu durumun çözülmesi gerekmektedir. Fakat
VBNC’nin henüz genetik mekanizması bilinmemektedir.

References

  • [1] D. McDougald, S. A. Rice, D. Weichart and S. Kjelleberg, “Nonculturability: adaptation or debilitation?,” FEMS Microbiology Ecology, vol. 25, pp. 1-9, 1998.
  • [2] G. Bogosian, P. J. Morris and J. P. O’neil, “A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state,” Applied Environmental Microbiology, vol. 64, no. 5, pp. 1736-1742, 1998.
  • [3] F. Joux, P. Lebaron and M. Trousellier, “Succession of cellular states in a Salmonella Typhimurium population during starvation in artificial seawater microcosms,” FEMS Microbiology Ecology, vol. 22, pp. 65-76, 1997.
  • [4] H. S. Xu, N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes and R. R. Colwell, “Survival and viability of noncultrable Escherichia coli and Vibrio cholerae in the estuarine and marine environment,” Microbial Ecology, vol. 8, pp. 313-323, 1982.
  • [5] S. Kjelleberg, M. Hermansson and P. Marden and G. W. Jones “The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment.” Anneal Review Microbiology, vol. 41, pp. 25-49, 1987.
  • [6] K. Linder and J. D. Oliver, “Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus,” Applied Environmental Microbiology, vol. 55, no. 11, pp. 2837-2842, 1989.
  • [7] R. R. Colwell, I. T. Knight, C. Somerville, S. Shults and C. W. Kaspar, “Viable but non-culturable phenomenon in relationship to starvation/survival, ‘’Injury’’, and strategies for survival of bacteria in the environment.” Recent Advances ın Microbial Ecology, 5th International Symposium on Microbial Ecology, Japan, pp. 85-88, 1989
  • [8] Y. Tanaka, N. Yamaguchi and M. Nasu, “Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry,” Journal Applied Microbiology, vol. 88, pp. 228-238, 2000.
  • [9] A. Ultee, N. Souvatzi, K. Maniadi and H. König, “Identification of the culturable and nonculturable bacterial population in ground water of a municipal water supply in Germany,” Journal Applied Microbiology, vol. 96, pp. 560-568, 2004.
  • [10] A. A. Gavriel, J. P. Landre and A. J. Lamb, “Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland,” Journal Applied Microbiology, vol. 84, pp. 383-392, 1998.
  • [11] D. Weichart, D. McDougald, D. Jacobs and S. Kjelleberg, “In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus,” Applied Environmental Microbiology, vol. 63, no. 7, pp. 2754-2758, 1997.
  • [12] J. Lesne, S. Berthet, S. Binard, A. Rouxel and F. Humbert, “Changes in culturability and virulence of Salmonella typhimurium during long-term starvation under desiccating conditions,” International Journal of Food Microbiology, vol. 60, pp. 195-203, 2000.
  • [13] A. Muela, J. M. Garcia-Bringas, I. Arana and I. Barcina, ‘’The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation,’’ Microbial Ecology, vol. 39, pp. 65-71, 2000.
  • [14] M. Ordax, E. Marco-Noales, M. M. López and E. G. Biosca, “Survival Strategy of Erwinia amylovora against Copper: Induction of the Viable-but-Nonculturable State”, Applied Environmental Microbiology, vol. 72, no. 5, pp. 3482-3488, 2006.
  • [15] T. Vattakaven, P. Bond, G. Bradley and C. B. Munn, “Differential Effects of Temperature and Starvation on Induction of the Viable-but-Nonculturable State in the Coral Pathogens Vibrio shiloi and Vibrio tasmaniensis,” Applied Environmental Microbiology, vol. 72, pp. 6508–6513, 2006.
  • [16] G. Caruso, M. Mancuso and E. Crisafi, “Combined fluorescent antibody assay and viability staining for the assessment of the physiological states of Escherichia coli in seawaters.” Journal of Applied Microbiology, vol. 95, pp. 225-233, 2003.
  • [17] K. P. Flint, “The long-term survival of Escherichia coli in river water,” Journal of Applied Bacteriology, vol. 63, pp. 261-270, 1987.
  • [18] R. Özkanca, ‘’Survival and physiological status of Escherichia coli in lake water under different nutrient conditions.’’ Ph. D. Dissertation, Deparment of Biological Sciences, University of Warwick, England, 1993.
  • [19] R. Özkanca, “Metabolik olarak aktif fakat kültürü yapılmayan Escherichia coli’nin göl suyundaki yaşamı ve determinasyonu,” Turkish Journal of Biology, c. 20, ss. 87-97, 1996.
  • [20] P. B. Hatzinger, P. Palmer, R. L. Smith, C. T. Penarrieta and T. Yoshinari, “Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria,” Journal of Microbiology Methods, vol. 52, pp. 47-58, 2003.
  • [21] J. D. Oliver and D. Wanucha, “Survival of Vibrio vulnificus at reduced temperatures and elevated nutrient,’’ Journal of Food Safety, vol. 10, pp. 79-86, 1989.
  • [22] D. M. Rollins and R. R. Colwell, “Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment,” Applied Environmental Microbiology, vol. 52, pp. 531-535, 1986.
  • [23] V. Besnard, M. Federighi and J. M. Cappelier, “Evidence of viable but nonculturable state in Listeria monocytogenes by direct viable count and CTC-DAPİ double staining,” Food Microbiology, vol. 17, pp. 697-704, 2000.
  • [24] I. Barcina, J. M. Gonzalez, J. Iriberri and L. Egea, “Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water,” Applied Environmental Microbiology, vol. 55, pp. 246-251, 1989.
  • [25] W. G. Roth, M. P. Leckie and D. N. Dietzler, “Restoration of colony forming activity in osmotically stressed Escherichia coli by betaine,” Applied Environmental Microbiology, vol. 54, pp. 3142-3146, 1988.
  • [26] R. Özkanca, N. Şahin, K. Işık, E. Kariptaş and K. P. Flint, “The effect of toluidine blue on the survival, dormancy and outer membrane porin proteins (OmpC and OmpF) of Salmonella typhimurium LT2 in seawater,” Journal of Applied Microbiology, vol. 92, pp. 1097-1104, 2002.
  • [27] L. Fiksdal and I. Tryland, “Effect of UV light irradiation, starvation and heat on Escherichia coli ß-D-galactosidase activity and other potential viability parameters,” Journal of Applied Microbiology, vol. 87, pp. 62-71, 1999 . [28] M. Pommepuy, M. Butin, A. Derrien, M. Gourmelon, R. R. Colwell, et al., “Retention of Enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight,” Applied Environmental Microbiology, vol. 62, no. 12, pp. 4621-4626, 1996.
  • [29] F. P. Yu and G. A. McFeters, ‘’Physiological responses of bacteria in biofilms to disinfection,’’ Applied Environmental Microbiology, vol. 60, pp. 2462-2466, 1994.
  • [30] A. Villarino, A. L. Toribio, B. M. Brena, P. A. D. Grimont and O. M. Bouvet, “On the relationship between the physiological state of bacteria and rapid enzymatic assays of fecal coliforms in the environment,” Biotechnology Letters, vol. 25, pp. 1329-1334, 2003.
  • [31] D. B. Roszak and R. R. Colwell, “Survival strategies of bacteria in the natural environment,” Microbiological Reviews, vol. 51, no. 3, pp. 365-379, 1987.
  • [32] R. Zimmermann, R. Iturriaga and J. Becker-Birck, “Simultaneous determination of the total number of aquatic bacteria and the number there of involved in respiration,” Applied Environmental Microbiology, vol. 36, pp. 926-935,1978.
  • [33] G. G. Rodriguez, D. Phipps, K. Ishiguro and H. F. Ridgway, “Use of a fluorescent redox probe for direct visualization of actively respiring bacteria,” Applied Environmental Microbiology, vol. 58, no. 6, pp. 1801-1808, 1992.
  • [34] W. Baffone, B. Citterio, E.Vittoria, A. Casaroli, R. Campana, et al., “Retention of virulence in viable but nonculturable halophilic Vibrio spp,” International Journal of Food Microbiology, vol. 89, pp. 31-39, 2003.
  • [35] C. Laflamme, S. Lavigne, J. Ho and C. Duchaine, “Assessment of bacterial endospore viability with fluorescent dyes,” Journal of Applied Microbiology, vol. 96, pp. 684-692, 2004.
  • [36] K. Kogure, U. Simidu and N. Taga, “A tentative direct microscopic method for counting living marine bacteria,” Canadian Journal of Microbiology, vol. 25, pp. 415-420, 1979.
  • [37] J. D. Oliver and R. Bockian, “In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus,” Applied Environmental Microbiology, vol. 61, no. 7, pp. 2620-2623, 1995.
  • [38] A. S. Braux, J. Minet, Z. Tamanai-Shacoori, G. Riou, and M. Cormier, “Direct enumeration of injured Escherichia coli cells harvested onto membrane filters,” Journal of Microbiology Methods, vol. 31, pp. 1-8, 1997.
  • [39] D. Yokomaku, N. Yamaguchi and M. Nasu, “Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments,” Applied Environmental Microbiology, vol. 66, no. 12, pp. 5544-5548, 2000.
  • [40] D. B. Roszak and R. R. Colwell, “Metabolic activity of bacterial cells enumerated by direct viable count,” Applied Environmental Microbiology vol. 53, no. 12, pp. 2889-2983, 1987.
  • [41] R. A. N. Chmielewski and J. F. Frank, “Formation of viable but nonculturable Salmonella during starvation in chemically defined solutions,” Letters in Applied Microbiology, vol. 20, pp. 380-384, 1995.
  • [42] G. Schaule, H. C. Flemming, and H. F. Ridgway, “Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water,” Applied Environmental Microbiology, vol. 59, pp. 3850-3857, 1993.
  • [43] R. Ramalho, J. Cunha, P. Teixeira, and P. A. Gibbs, “Improved methods for enumeration of heterotrophic bacteria in bottled mineral waters,” Journal of Microbiology Methods, vol. 44, pp. 97-103, 2001.
  • [44] J. D. Van Elsas, P. Kastelein, P. M. De Vries and L. S. Van Overbeek, “Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water,” Canadian Journal of Microbiology, vol. 47, pp. 842-854, 2001.
  • [45] W. Yu, W. K. Dodds, M. K. Banks, J. Skalsky and E. A. Strauss, “Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes,” Applied Environmental Microbiology, vol. 61, pp. 3367-3372, 1995.
  • [46] L. M. Proctor and A. C. Souza, “Method for enumeration of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) active cells and cell specific CTC activity of benthic bacteria in riverine, estuarine and coastal sediments,” Journal of Microbiology Methods, vol. 43, pp. 213-222, 2001.
  • [47] S. Ullrich, B. Karrasch, H. Hoppe, K. Jeskulke, and M. Mehrens, “Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride.” Applied Environmental Microbiology, vol. 62 (12), pp. 4587-4593, 1996.
  • [48] V. K. Bhupathiraju, M. Hernandez, D. Landfear and L. Alvarez-Cohen, “Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria,” Journal of Microbiology Methods, vol. 37, pp. 231-243, 1999.
  • [49] A. S. Kaprelyants and D. B. Kell, “Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry,” Journal of Applied Bacteriology, vol. 72, pp. 410-422, 1992.
  • [50] N. Yamaguchi, and M. Nasu, “Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment,” Journal of Applied Microbiology, vol. 83, pp. 43-52, 1997.
  • [51] R. Lopez Amaros, J. Comas and J. Vives Rego, “Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation survival in seawater using rhodamine 123, propidium iodide and oxonol,” Applied Environmental Microbiology, vol. 61, pp. 2521-2526, 1995.
  • [52] B. L. Roth, M. Poot, S. T. Yue and P. J. Millard, “Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain,” Applied Environmental Microbiology, vol. 53, pp. 2889-2983, 1997.
  • [53] G. V. Mukamolova, S. S. Kormer, N. D. Yanopolskaya and A. S. Kaprelyants, “Properties of dormant cells in stationary phase cultures of Micrococcus luteus during prolonged incubation,” Mikrobiologiya (Russian), vol. 64, pp. 284-288, 1995.
  • [54] G. V. Mukamolova, A. S. Kaprelyants and D. B. Kell, “Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase,” Antonie Van Leeuwenhoek, vol. 67, pp. 289-295, 1995.
  • [55] K. Kondo, A. Takade and K. Amako, “Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique,” FEMS Microbiology Letters, vol. 123, pp. 179-184, 1994.
  • [56] I. Effendi and B. Austin, “Dormant/unculturable cells of fish pathogen Aeromonas salmonicida,” Microbial Ecology, vol. 30, pp. 183-192, 1995.
  • [57] D. Weichart and S. Kjelleberg, “Stres resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus,” Microbiology, vol. 142, pp. 845-853, 1996.
  • [58] H. Yamamoto, Y. Hashimoto, and T. Ezaki, “Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation,” FEMS Microbiology Ecology, vol. 20, pp. 149-154, 1996.
  • [59] X. Jiang and T. J. Chai, “Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells,” Applied Environmental Microbiology, vol. 62, pp. 1300-1305, 1996.
  • [60] G. Donelli, C. Matarrese, B. Fiorentini, T. Dainelli, E. Taraborelli, et al., “The effect of oxygen on the growth and cell morphology of Helicobacter pylori,” FEMS Microbiology Letters, vol.168, pp. 9-15, 1998.
  • [61] A. Hartke, J. C. Giard, J. M. Laplace and Y. Auffray, “Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis,” Applied Environmental Microbiology, vol. 64, pp. 4238-4245, 1998.
  • [62] K. Costa, G. Bacher, G. Allmaier, M. G. Dominguez-Bello, L. Engstrand, et al., “The morphological transition of Helicobacter pylori cells of spiral to coccoid is preceded by a substantial modification of the cell wall,” Journal of Bacteriology, vol. 181, pp. 3710-3715, 1999.
  • [63] C. Signoretto, M. M. Lleo, M. C. Tafi, and P. Canepari, “Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state,” Applied Environmental Microbiology, vol. 66, no. 5, pp. 1953-1959, 2000.
  • [64] O. Idil, R. Özkanca, C. Darcan and K.P. Flint, ‘’Escherichia coli: Dominance of red light over other visible light sources in establishing viable but nonculturable state,’’ Photochemistry and Photobiology, vol.86, no. 1, 104-109, 2010.
  • [65] O. Idil, C. Darcan and R. Ozkanca, “The effect of UV-A and different wavelengths of visible lights on survival of Salmonella typhimurium in seawater microcosms,” Journal of Pure Applied Microbiology, vol. 5, no. 2, pp. 581-592, 2011.
  • [66] O. Idil, C. Darcan, T. Ozen and R. Ozkanca, ‘’The effect of UV-A and various visible light wavelengths radiations on expression level of Escherichia coli oxidative enzymes in seawater,’’ Jundishapur Journal of Microbiology, vol. 6, no. 3, pp. 226-232, 2013.
  • [67] C. Darcan, “Karadeniz suyunda pH, osmolarite ve açlık stresinin Escherichia coli’nin dış membran protein sentez düzeyine etkisinin araştırılması,” Doktora tezi, Biyoloji Bölümü, Ondokuz Mayıs Üniversitesi, Samsun, Türkiye, 2005.
  • [68] C. Darcan, R. Özkanca and K. P. Flint, “Survival of nonspecific porin-deficient mutants of Escherichia coli in black sea water,” Lett. App. Microbiol, vol. 37, pp. 380-385, 2003.
  • [69] C. Darcan, R. Ozkanca, O. Idil and K. P. Flint, ‘’Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water,’’ Polish Journal of Microbiology, vol. 58, no. 4, pp. 307-317, 2009.
  • [70] D. J. Grimes, and R. R. Colwell, “Viability and virulence of Escherichia coli suspended by membrane chamber in semi tropical ocean water,” FEMS Microbiology Letters, vol. 34, pp. 161-165, 1986.
  • [71] L. Rahman, M. Shahamat, P. A. Kirchman, E. Russek-Cohen and R. R. Colwell, “Methionine uptake and cytopathogenicity of viable but non-cultrable Shigella dysenteriae type 1,” Applied Environmental Microbiology, vol. 60, pp. 3573-3578, 1994.
  • [72] L. Rahman, M. Shahamat, M. A. Chowdhury and R. R. Colwell, “Potantial virulence of viable but non-cultrable Shigella dysenteriae type 1,” Applied Environmental Microbiology, vol. 62, pp. 115-120, 1996.
  • [73] J. M. Cappelier, C. Magras, J. L. Jouve and M. Federighi, “Recovery of viable but non-culturable Campylobacter jejuni cells in two animals models,” Food Microbiology, vol.16, pp. 375-383, 1999.
  • [74] J. A. W. Morgan, G. Rhodes and R. W. Pickup, “Survival of noncultrable Aeromonas salmonicida in lake water,” Applied Environmental Microbiology, vol. 59, pp. 874-880, 1993.
  • [75] S. I. Makino, T. Kii, H. Asakura, T. Shirahata, T. Ikeda, et al., “Does Enterohemorrhagic Escherichia coli O157:H7 enter the viable but noncultrable state in salted Salmon roe?” Applied Environmental Microbiology, vol. 66, no. 12, pp. 5536-5539, 2000.
  • [76] J. A. W. Morgan, P. A. Cranwell, and R. W. Pickup, “Survival of Aeromonas salmonicida in lake water,” Applied Environmental Microbiology, vol. 57, pp. 1777-1782, 1991.
  • [77] G. L. Kolling and K. R. Matthews, “Examination of recovery in vitro and in vivo of noncultrable Escherichia coli O157:H7,” Applied Environmental Microbiology, vol. 67, no. 9, pp. 3928-3933, 2001.
  • [78] W. G. Roth, M. P. Leckie and D. N. Dietzler, “Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine,” Applied Environmental Microbiology, vol. 54, pp.3142–3146, 1988.
  • [79] S. N. Wai, T. Moriya, K. Kondo, H. Misumi and K. Amako, “Resuscitation of Vibrio cholerae 01 strain TSI-4 from a viable but noncultrable state by heat shock,” FEMS Microbiology Letters, vol. 136, pp. 187-191, 1996.
  • [80] A. S. Kaprelyants, G. V. Mukamolova and D. B. Kell, “Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution,” FEMS Microbiology Letters, vol. 115, pp. 347-352, 1994.
  • [81] T. V. Votyakova, A. S. Kaprelyants and D. B. Kell, “Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase; the population effect,” Applied Environmental Microbiology, vol. 60, no. 9, pp. 3284-3291, 1994.
  • [82] D. B. Kell, A. S. Kaprelyants, D. H. Weichart, C. R. Harwood, and M. R. Barer, “Viability and activity in readily culturable bacteria: a rewiew and discussion of the practical issues,” Antonie Van Leeuwenhoek, vol. 73, no. 2, pp. 169-187, 1998.
  • [83] R. Reissbrodt, I. Rienaecker, J. M. Romanova, P. P. E. Freestone, R. D. Haigh, et al. “Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat stable enterobacterial autoinducer.” Applied Environmental Microbiology, vol. 68, no. 10, pp. 4788-4794, 2002.

Viable But Non Culturable State as a Survival Strategy in Bacteria and The Important of This State

Year 2018, Volume: 6 Issue: 1, 108 - 122, 31.01.2018
https://doi.org/10.29130/dubited.347176

Abstract

In this study, dormancy state which is a life strategy be able to maintain their lives under stress conditions of the bacteria which are not differentiating feature which can not form a sport or cyst) can be sustained under the stress conditions was investigated. The Viable But Non Culturable State (VBNC) hypothesis is metabolically active but not cultured in the bacterial cells by known laboratory methods. Due to this situation, there is a great problems in isolating and counting bacteria from natural environments. Furthermore, a conventional method that can be applied to both all bacteria and under all conditions has not yet been developed. This situation, which is very important for human health, needs to be solved. The genetic mechanism of VBNC is not yet known.

References

  • [1] D. McDougald, S. A. Rice, D. Weichart and S. Kjelleberg, “Nonculturability: adaptation or debilitation?,” FEMS Microbiology Ecology, vol. 25, pp. 1-9, 1998.
  • [2] G. Bogosian, P. J. Morris and J. P. O’neil, “A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state,” Applied Environmental Microbiology, vol. 64, no. 5, pp. 1736-1742, 1998.
  • [3] F. Joux, P. Lebaron and M. Trousellier, “Succession of cellular states in a Salmonella Typhimurium population during starvation in artificial seawater microcosms,” FEMS Microbiology Ecology, vol. 22, pp. 65-76, 1997.
  • [4] H. S. Xu, N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes and R. R. Colwell, “Survival and viability of noncultrable Escherichia coli and Vibrio cholerae in the estuarine and marine environment,” Microbial Ecology, vol. 8, pp. 313-323, 1982.
  • [5] S. Kjelleberg, M. Hermansson and P. Marden and G. W. Jones “The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment.” Anneal Review Microbiology, vol. 41, pp. 25-49, 1987.
  • [6] K. Linder and J. D. Oliver, “Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus,” Applied Environmental Microbiology, vol. 55, no. 11, pp. 2837-2842, 1989.
  • [7] R. R. Colwell, I. T. Knight, C. Somerville, S. Shults and C. W. Kaspar, “Viable but non-culturable phenomenon in relationship to starvation/survival, ‘’Injury’’, and strategies for survival of bacteria in the environment.” Recent Advances ın Microbial Ecology, 5th International Symposium on Microbial Ecology, Japan, pp. 85-88, 1989
  • [8] Y. Tanaka, N. Yamaguchi and M. Nasu, “Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry,” Journal Applied Microbiology, vol. 88, pp. 228-238, 2000.
  • [9] A. Ultee, N. Souvatzi, K. Maniadi and H. König, “Identification of the culturable and nonculturable bacterial population in ground water of a municipal water supply in Germany,” Journal Applied Microbiology, vol. 96, pp. 560-568, 2004.
  • [10] A. A. Gavriel, J. P. Landre and A. J. Lamb, “Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland,” Journal Applied Microbiology, vol. 84, pp. 383-392, 1998.
  • [11] D. Weichart, D. McDougald, D. Jacobs and S. Kjelleberg, “In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus,” Applied Environmental Microbiology, vol. 63, no. 7, pp. 2754-2758, 1997.
  • [12] J. Lesne, S. Berthet, S. Binard, A. Rouxel and F. Humbert, “Changes in culturability and virulence of Salmonella typhimurium during long-term starvation under desiccating conditions,” International Journal of Food Microbiology, vol. 60, pp. 195-203, 2000.
  • [13] A. Muela, J. M. Garcia-Bringas, I. Arana and I. Barcina, ‘’The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation,’’ Microbial Ecology, vol. 39, pp. 65-71, 2000.
  • [14] M. Ordax, E. Marco-Noales, M. M. López and E. G. Biosca, “Survival Strategy of Erwinia amylovora against Copper: Induction of the Viable-but-Nonculturable State”, Applied Environmental Microbiology, vol. 72, no. 5, pp. 3482-3488, 2006.
  • [15] T. Vattakaven, P. Bond, G. Bradley and C. B. Munn, “Differential Effects of Temperature and Starvation on Induction of the Viable-but-Nonculturable State in the Coral Pathogens Vibrio shiloi and Vibrio tasmaniensis,” Applied Environmental Microbiology, vol. 72, pp. 6508–6513, 2006.
  • [16] G. Caruso, M. Mancuso and E. Crisafi, “Combined fluorescent antibody assay and viability staining for the assessment of the physiological states of Escherichia coli in seawaters.” Journal of Applied Microbiology, vol. 95, pp. 225-233, 2003.
  • [17] K. P. Flint, “The long-term survival of Escherichia coli in river water,” Journal of Applied Bacteriology, vol. 63, pp. 261-270, 1987.
  • [18] R. Özkanca, ‘’Survival and physiological status of Escherichia coli in lake water under different nutrient conditions.’’ Ph. D. Dissertation, Deparment of Biological Sciences, University of Warwick, England, 1993.
  • [19] R. Özkanca, “Metabolik olarak aktif fakat kültürü yapılmayan Escherichia coli’nin göl suyundaki yaşamı ve determinasyonu,” Turkish Journal of Biology, c. 20, ss. 87-97, 1996.
  • [20] P. B. Hatzinger, P. Palmer, R. L. Smith, C. T. Penarrieta and T. Yoshinari, “Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria,” Journal of Microbiology Methods, vol. 52, pp. 47-58, 2003.
  • [21] J. D. Oliver and D. Wanucha, “Survival of Vibrio vulnificus at reduced temperatures and elevated nutrient,’’ Journal of Food Safety, vol. 10, pp. 79-86, 1989.
  • [22] D. M. Rollins and R. R. Colwell, “Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment,” Applied Environmental Microbiology, vol. 52, pp. 531-535, 1986.
  • [23] V. Besnard, M. Federighi and J. M. Cappelier, “Evidence of viable but nonculturable state in Listeria monocytogenes by direct viable count and CTC-DAPİ double staining,” Food Microbiology, vol. 17, pp. 697-704, 2000.
  • [24] I. Barcina, J. M. Gonzalez, J. Iriberri and L. Egea, “Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water,” Applied Environmental Microbiology, vol. 55, pp. 246-251, 1989.
  • [25] W. G. Roth, M. P. Leckie and D. N. Dietzler, “Restoration of colony forming activity in osmotically stressed Escherichia coli by betaine,” Applied Environmental Microbiology, vol. 54, pp. 3142-3146, 1988.
  • [26] R. Özkanca, N. Şahin, K. Işık, E. Kariptaş and K. P. Flint, “The effect of toluidine blue on the survival, dormancy and outer membrane porin proteins (OmpC and OmpF) of Salmonella typhimurium LT2 in seawater,” Journal of Applied Microbiology, vol. 92, pp. 1097-1104, 2002.
  • [27] L. Fiksdal and I. Tryland, “Effect of UV light irradiation, starvation and heat on Escherichia coli ß-D-galactosidase activity and other potential viability parameters,” Journal of Applied Microbiology, vol. 87, pp. 62-71, 1999 . [28] M. Pommepuy, M. Butin, A. Derrien, M. Gourmelon, R. R. Colwell, et al., “Retention of Enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight,” Applied Environmental Microbiology, vol. 62, no. 12, pp. 4621-4626, 1996.
  • [29] F. P. Yu and G. A. McFeters, ‘’Physiological responses of bacteria in biofilms to disinfection,’’ Applied Environmental Microbiology, vol. 60, pp. 2462-2466, 1994.
  • [30] A. Villarino, A. L. Toribio, B. M. Brena, P. A. D. Grimont and O. M. Bouvet, “On the relationship between the physiological state of bacteria and rapid enzymatic assays of fecal coliforms in the environment,” Biotechnology Letters, vol. 25, pp. 1329-1334, 2003.
  • [31] D. B. Roszak and R. R. Colwell, “Survival strategies of bacteria in the natural environment,” Microbiological Reviews, vol. 51, no. 3, pp. 365-379, 1987.
  • [32] R. Zimmermann, R. Iturriaga and J. Becker-Birck, “Simultaneous determination of the total number of aquatic bacteria and the number there of involved in respiration,” Applied Environmental Microbiology, vol. 36, pp. 926-935,1978.
  • [33] G. G. Rodriguez, D. Phipps, K. Ishiguro and H. F. Ridgway, “Use of a fluorescent redox probe for direct visualization of actively respiring bacteria,” Applied Environmental Microbiology, vol. 58, no. 6, pp. 1801-1808, 1992.
  • [34] W. Baffone, B. Citterio, E.Vittoria, A. Casaroli, R. Campana, et al., “Retention of virulence in viable but nonculturable halophilic Vibrio spp,” International Journal of Food Microbiology, vol. 89, pp. 31-39, 2003.
  • [35] C. Laflamme, S. Lavigne, J. Ho and C. Duchaine, “Assessment of bacterial endospore viability with fluorescent dyes,” Journal of Applied Microbiology, vol. 96, pp. 684-692, 2004.
  • [36] K. Kogure, U. Simidu and N. Taga, “A tentative direct microscopic method for counting living marine bacteria,” Canadian Journal of Microbiology, vol. 25, pp. 415-420, 1979.
  • [37] J. D. Oliver and R. Bockian, “In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus,” Applied Environmental Microbiology, vol. 61, no. 7, pp. 2620-2623, 1995.
  • [38] A. S. Braux, J. Minet, Z. Tamanai-Shacoori, G. Riou, and M. Cormier, “Direct enumeration of injured Escherichia coli cells harvested onto membrane filters,” Journal of Microbiology Methods, vol. 31, pp. 1-8, 1997.
  • [39] D. Yokomaku, N. Yamaguchi and M. Nasu, “Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments,” Applied Environmental Microbiology, vol. 66, no. 12, pp. 5544-5548, 2000.
  • [40] D. B. Roszak and R. R. Colwell, “Metabolic activity of bacterial cells enumerated by direct viable count,” Applied Environmental Microbiology vol. 53, no. 12, pp. 2889-2983, 1987.
  • [41] R. A. N. Chmielewski and J. F. Frank, “Formation of viable but nonculturable Salmonella during starvation in chemically defined solutions,” Letters in Applied Microbiology, vol. 20, pp. 380-384, 1995.
  • [42] G. Schaule, H. C. Flemming, and H. F. Ridgway, “Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water,” Applied Environmental Microbiology, vol. 59, pp. 3850-3857, 1993.
  • [43] R. Ramalho, J. Cunha, P. Teixeira, and P. A. Gibbs, “Improved methods for enumeration of heterotrophic bacteria in bottled mineral waters,” Journal of Microbiology Methods, vol. 44, pp. 97-103, 2001.
  • [44] J. D. Van Elsas, P. Kastelein, P. M. De Vries and L. S. Van Overbeek, “Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water,” Canadian Journal of Microbiology, vol. 47, pp. 842-854, 2001.
  • [45] W. Yu, W. K. Dodds, M. K. Banks, J. Skalsky and E. A. Strauss, “Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes,” Applied Environmental Microbiology, vol. 61, pp. 3367-3372, 1995.
  • [46] L. M. Proctor and A. C. Souza, “Method for enumeration of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) active cells and cell specific CTC activity of benthic bacteria in riverine, estuarine and coastal sediments,” Journal of Microbiology Methods, vol. 43, pp. 213-222, 2001.
  • [47] S. Ullrich, B. Karrasch, H. Hoppe, K. Jeskulke, and M. Mehrens, “Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride.” Applied Environmental Microbiology, vol. 62 (12), pp. 4587-4593, 1996.
  • [48] V. K. Bhupathiraju, M. Hernandez, D. Landfear and L. Alvarez-Cohen, “Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria,” Journal of Microbiology Methods, vol. 37, pp. 231-243, 1999.
  • [49] A. S. Kaprelyants and D. B. Kell, “Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry,” Journal of Applied Bacteriology, vol. 72, pp. 410-422, 1992.
  • [50] N. Yamaguchi, and M. Nasu, “Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment,” Journal of Applied Microbiology, vol. 83, pp. 43-52, 1997.
  • [51] R. Lopez Amaros, J. Comas and J. Vives Rego, “Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation survival in seawater using rhodamine 123, propidium iodide and oxonol,” Applied Environmental Microbiology, vol. 61, pp. 2521-2526, 1995.
  • [52] B. L. Roth, M. Poot, S. T. Yue and P. J. Millard, “Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain,” Applied Environmental Microbiology, vol. 53, pp. 2889-2983, 1997.
  • [53] G. V. Mukamolova, S. S. Kormer, N. D. Yanopolskaya and A. S. Kaprelyants, “Properties of dormant cells in stationary phase cultures of Micrococcus luteus during prolonged incubation,” Mikrobiologiya (Russian), vol. 64, pp. 284-288, 1995.
  • [54] G. V. Mukamolova, A. S. Kaprelyants and D. B. Kell, “Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase,” Antonie Van Leeuwenhoek, vol. 67, pp. 289-295, 1995.
  • [55] K. Kondo, A. Takade and K. Amako, “Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique,” FEMS Microbiology Letters, vol. 123, pp. 179-184, 1994.
  • [56] I. Effendi and B. Austin, “Dormant/unculturable cells of fish pathogen Aeromonas salmonicida,” Microbial Ecology, vol. 30, pp. 183-192, 1995.
  • [57] D. Weichart and S. Kjelleberg, “Stres resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus,” Microbiology, vol. 142, pp. 845-853, 1996.
  • [58] H. Yamamoto, Y. Hashimoto, and T. Ezaki, “Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation,” FEMS Microbiology Ecology, vol. 20, pp. 149-154, 1996.
  • [59] X. Jiang and T. J. Chai, “Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells,” Applied Environmental Microbiology, vol. 62, pp. 1300-1305, 1996.
  • [60] G. Donelli, C. Matarrese, B. Fiorentini, T. Dainelli, E. Taraborelli, et al., “The effect of oxygen on the growth and cell morphology of Helicobacter pylori,” FEMS Microbiology Letters, vol.168, pp. 9-15, 1998.
  • [61] A. Hartke, J. C. Giard, J. M. Laplace and Y. Auffray, “Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis,” Applied Environmental Microbiology, vol. 64, pp. 4238-4245, 1998.
  • [62] K. Costa, G. Bacher, G. Allmaier, M. G. Dominguez-Bello, L. Engstrand, et al., “The morphological transition of Helicobacter pylori cells of spiral to coccoid is preceded by a substantial modification of the cell wall,” Journal of Bacteriology, vol. 181, pp. 3710-3715, 1999.
  • [63] C. Signoretto, M. M. Lleo, M. C. Tafi, and P. Canepari, “Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state,” Applied Environmental Microbiology, vol. 66, no. 5, pp. 1953-1959, 2000.
  • [64] O. Idil, R. Özkanca, C. Darcan and K.P. Flint, ‘’Escherichia coli: Dominance of red light over other visible light sources in establishing viable but nonculturable state,’’ Photochemistry and Photobiology, vol.86, no. 1, 104-109, 2010.
  • [65] O. Idil, C. Darcan and R. Ozkanca, “The effect of UV-A and different wavelengths of visible lights on survival of Salmonella typhimurium in seawater microcosms,” Journal of Pure Applied Microbiology, vol. 5, no. 2, pp. 581-592, 2011.
  • [66] O. Idil, C. Darcan, T. Ozen and R. Ozkanca, ‘’The effect of UV-A and various visible light wavelengths radiations on expression level of Escherichia coli oxidative enzymes in seawater,’’ Jundishapur Journal of Microbiology, vol. 6, no. 3, pp. 226-232, 2013.
  • [67] C. Darcan, “Karadeniz suyunda pH, osmolarite ve açlık stresinin Escherichia coli’nin dış membran protein sentez düzeyine etkisinin araştırılması,” Doktora tezi, Biyoloji Bölümü, Ondokuz Mayıs Üniversitesi, Samsun, Türkiye, 2005.
  • [68] C. Darcan, R. Özkanca and K. P. Flint, “Survival of nonspecific porin-deficient mutants of Escherichia coli in black sea water,” Lett. App. Microbiol, vol. 37, pp. 380-385, 2003.
  • [69] C. Darcan, R. Ozkanca, O. Idil and K. P. Flint, ‘’Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water,’’ Polish Journal of Microbiology, vol. 58, no. 4, pp. 307-317, 2009.
  • [70] D. J. Grimes, and R. R. Colwell, “Viability and virulence of Escherichia coli suspended by membrane chamber in semi tropical ocean water,” FEMS Microbiology Letters, vol. 34, pp. 161-165, 1986.
  • [71] L. Rahman, M. Shahamat, P. A. Kirchman, E. Russek-Cohen and R. R. Colwell, “Methionine uptake and cytopathogenicity of viable but non-cultrable Shigella dysenteriae type 1,” Applied Environmental Microbiology, vol. 60, pp. 3573-3578, 1994.
  • [72] L. Rahman, M. Shahamat, M. A. Chowdhury and R. R. Colwell, “Potantial virulence of viable but non-cultrable Shigella dysenteriae type 1,” Applied Environmental Microbiology, vol. 62, pp. 115-120, 1996.
  • [73] J. M. Cappelier, C. Magras, J. L. Jouve and M. Federighi, “Recovery of viable but non-culturable Campylobacter jejuni cells in two animals models,” Food Microbiology, vol.16, pp. 375-383, 1999.
  • [74] J. A. W. Morgan, G. Rhodes and R. W. Pickup, “Survival of noncultrable Aeromonas salmonicida in lake water,” Applied Environmental Microbiology, vol. 59, pp. 874-880, 1993.
  • [75] S. I. Makino, T. Kii, H. Asakura, T. Shirahata, T. Ikeda, et al., “Does Enterohemorrhagic Escherichia coli O157:H7 enter the viable but noncultrable state in salted Salmon roe?” Applied Environmental Microbiology, vol. 66, no. 12, pp. 5536-5539, 2000.
  • [76] J. A. W. Morgan, P. A. Cranwell, and R. W. Pickup, “Survival of Aeromonas salmonicida in lake water,” Applied Environmental Microbiology, vol. 57, pp. 1777-1782, 1991.
  • [77] G. L. Kolling and K. R. Matthews, “Examination of recovery in vitro and in vivo of noncultrable Escherichia coli O157:H7,” Applied Environmental Microbiology, vol. 67, no. 9, pp. 3928-3933, 2001.
  • [78] W. G. Roth, M. P. Leckie and D. N. Dietzler, “Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine,” Applied Environmental Microbiology, vol. 54, pp.3142–3146, 1988.
  • [79] S. N. Wai, T. Moriya, K. Kondo, H. Misumi and K. Amako, “Resuscitation of Vibrio cholerae 01 strain TSI-4 from a viable but noncultrable state by heat shock,” FEMS Microbiology Letters, vol. 136, pp. 187-191, 1996.
  • [80] A. S. Kaprelyants, G. V. Mukamolova and D. B. Kell, “Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution,” FEMS Microbiology Letters, vol. 115, pp. 347-352, 1994.
  • [81] T. V. Votyakova, A. S. Kaprelyants and D. B. Kell, “Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase; the population effect,” Applied Environmental Microbiology, vol. 60, no. 9, pp. 3284-3291, 1994.
  • [82] D. B. Kell, A. S. Kaprelyants, D. H. Weichart, C. R. Harwood, and M. R. Barer, “Viability and activity in readily culturable bacteria: a rewiew and discussion of the practical issues,” Antonie Van Leeuwenhoek, vol. 73, no. 2, pp. 169-187, 1998.
  • [83] R. Reissbrodt, I. Rienaecker, J. M. Romanova, P. P. E. Freestone, R. D. Haigh, et al. “Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat stable enterobacterial autoinducer.” Applied Environmental Microbiology, vol. 68, no. 10, pp. 4788-4794, 2002.
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cihan Darcan

Publication Date January 31, 2018
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Darcan, C. (2018). Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 6(1), 108-122. https://doi.org/10.29130/dubited.347176
AMA Darcan C. Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi. DUBİTED. January 2018;6(1):108-122. doi:10.29130/dubited.347176
Chicago Darcan, Cihan. “Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum Ve Önemi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 6, no. 1 (January 2018): 108-22. https://doi.org/10.29130/dubited.347176.
EndNote Darcan C (January 1, 2018) Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 1 108–122.
IEEE C. Darcan, “Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi”, DUBİTED, vol. 6, no. 1, pp. 108–122, 2018, doi: 10.29130/dubited.347176.
ISNAD Darcan, Cihan. “Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum Ve Önemi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6/1 (January 2018), 108-122. https://doi.org/10.29130/dubited.347176.
JAMA Darcan C. Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi. DUBİTED. 2018;6:108–122.
MLA Darcan, Cihan. “Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum Ve Önemi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 6, no. 1, 2018, pp. 108-22, doi:10.29130/dubited.347176.
Vancouver Darcan C. Bakterilerde Yaşam Stratejisi Olarak Canlı Fakat Kültürü Yapılamayan Durum ve Önemi. DUBİTED. 2018;6(1):108-22.