Research Article
BibTex RIS Cite

Eriyik Yığma Modelleme Sürecinin Yüzey Doku Karakterizasyonu ve Parametre Optimizasyonu

Year 2018, Volume: 6 Issue: 4, 1028 - 1037, 01.08.2018
https://doi.org/10.29130/dubited.422560

Abstract

Eriyik
Yığma Modelleme (EYM), prototip ve model imalatının yanında son ürün olarak
kullanılabilecek nitelikte fonksiyonel termoplastik parçaların da imalatında
yaygın olarak kullanılan bir eklemeli imalat yöntemidir. EYM teknolojisi her ne
kadar karmaşık parçaların imalatına imkan sağlıyor olsa da, elde edilen
ürünlerin yüzey kalitesi henüz istenilen seviyeye ulaşamamıştır. Bu nedenle
istenilen yüzey kalitesini elde etmek için ürün yüzeyine son bitirme işlemleri
uygulanmaktadır. Bu işlemler zaman alıcıdır ve ilave maliyete neden olmaktadır.
Alternatif olarak, ürünlerin yüzey kalitesinin arttırılması için EYM işleminin
parametrelerinin optimize edilmesi daha ekonomik bir çözümdür. 
Bu
çalışmanın amacı, EYM prosesi ile polilaktik asit (PLA) parça imalatında kabuk
sayısı, dolgu oranı, dolgu geometrisi ve katman kalınlığı gibi parametrelerin
yüzey pürüzlülüğü üzerinde etkisinin incelenerek, optimum parametrelerin
belirlenmesidir. Numuneler Taguchi’nin standart L9 (3
4)
deneysel tasarım seti kullanılarak imal edilmiştir. Numunelerin yüzeyleri
mekanik profilometre ile ölçülerek, 2 boyutlu yüzey profilleri elde edilmiş ve
sonuçlar sinyal/gürültü oranı kalite karakteristiğine dönüştürülerek,
sonuçlardaki sapmalar belirlenmiştir. İşlem parametrelerinin anlamlılığını
belirlemek için de son olarak Varyans analizi (ANOVA) uygulanmıştır.  


References

  • T. Wohlers, Wohlers report 2012: executive summary. Fort Collins, CO: Wohlers Associates, Inc; 2012.
  • A. Boschetto, V. Giordano, F. Veniali, "3D roughness profile model in fused deposition modelling" Rapid Prototyping Journal, vol. 19, No. 4 pp. 240-252, 2013.
  • C.K. Chua, K.F. Leong, C.S. Lim, Rapid prototyping: principles and applications. third ed. Singapore: World Scientific; 2010.
  • D.S. Ingole, A.M. Kuthe, S.B. Thakare, A.S.Talankar, " Rapid prototyping–a technology transfer approach for development of rapid tooling" Rapid Prototyping Journal, vol.15, No.4, pp. 280-290, 2009.
  • O.S. Ivanova, C. B. Williams, T.A. Additive manufacturing (AM) and nanotechnology: promises and challenges" Campbell, Rapid Prototyping Journal, vol.19, no.5, pp.353-364, 2013.
  • R. Singh, S. Singh, I.P. Singh, F. Fabbrocino, F. Fraternali, "Investigation for surface finish improvement of FDM parts by vapor smoothing process", Composites Part B, vol. 111, pp. 228-234, 2017.
  • R. Anitha, S. Arunachalam, P. Radhakrishnan, "Critical parameters influencing the quality of prototypes in fused deposition modelling", Journal of Materials Processing Technology, vol. 118 (1–3): pp. 385-388, 2001.
  • S.O. Akande, "Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis", International Journal of Engineering Research & Technology (IJERT), Vol. 4, No. 04, 2015.
  • B. Vasudevarao, D.P. Natarajan, M. Henderson, "Sensitivity of RP surface finish to process parameter variation", Proceedings of solid free form fabrication, Austin, USA. 2000, pp. 252-258.
  • D.K. Ahn, H. Kim, S. Lee, "Surface roughness prediction using measured data and interpolation in layered manufacturing", Journal of Material Process Technology, vol. 209, pp. 664–671, 2009.
  • J. Martínez, J.L. Diéguez, A. Pereira, J.A. Pérez, "Modelization of surface roughness in FDM parts", AIP Conference Proceedings, vol.1431, pp. 849–1856, 2012.
  • F. Kartal, "Taguchi Metodolojisi ile Eriyik Yığma Modelleme Süreci Parametrelerinin Optimizasyonu", International Journal of 3D Printing Technologies and Digital Industry, vol. 1, no.1, pp. 49-56, 2017.
  • M. Sirvancı, Kalite İçin Deney Tasarımı Taguci Yaklasımı, Istanbul, Literatur Yayıncılık, 1997.
  • R. Leach, Fundamental Principles of Engineering Nanometrology, Second edition, Elsevier Inc., 2014, pp.252-253.

Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process

Year 2018, Volume: 6 Issue: 4, 1028 - 1037, 01.08.2018
https://doi.org/10.29130/dubited.422560

Abstract

Fused Deposition Modeling (FDM) is one of
the additive manufacturing (AM) methods, widely used for manufacturing
prototypes, models and functional thermoplastic parts as final product.
Although FDM technology provides opportunity for manufacturing complex
geometries, surface quality of the products cannot reach the required value
yet. For this reason post processing operations which are time consuming and
over costing, are applied to the finished parts. Alternatively, optimization of
the FDM process parameters is another solution which is more economical way for
improving surface quality of the printed parts. 
The aim of the study is to optimize the
FDM process parameters such as shell number, infill percentage, infill geometry
and layer thickness, for improving surface quality of the Polylactic Acid (PLA)
parts. L9 (34) standard Taguchi experimental design is applied for
manufacturing of the samples. The manufactured surfaces are inspected by
mechanical profilometer for obtaining 2D surface profiles and the results were
transformed in to signal-to-noise ratio
as a quality
characteristic to measure the deviation from desired values. Analysis of
variance (ANOVA) was used for determining significance of the testing
parameters.





 

References

  • T. Wohlers, Wohlers report 2012: executive summary. Fort Collins, CO: Wohlers Associates, Inc; 2012.
  • A. Boschetto, V. Giordano, F. Veniali, "3D roughness profile model in fused deposition modelling" Rapid Prototyping Journal, vol. 19, No. 4 pp. 240-252, 2013.
  • C.K. Chua, K.F. Leong, C.S. Lim, Rapid prototyping: principles and applications. third ed. Singapore: World Scientific; 2010.
  • D.S. Ingole, A.M. Kuthe, S.B. Thakare, A.S.Talankar, " Rapid prototyping–a technology transfer approach for development of rapid tooling" Rapid Prototyping Journal, vol.15, No.4, pp. 280-290, 2009.
  • O.S. Ivanova, C. B. Williams, T.A. Additive manufacturing (AM) and nanotechnology: promises and challenges" Campbell, Rapid Prototyping Journal, vol.19, no.5, pp.353-364, 2013.
  • R. Singh, S. Singh, I.P. Singh, F. Fabbrocino, F. Fraternali, "Investigation for surface finish improvement of FDM parts by vapor smoothing process", Composites Part B, vol. 111, pp. 228-234, 2017.
  • R. Anitha, S. Arunachalam, P. Radhakrishnan, "Critical parameters influencing the quality of prototypes in fused deposition modelling", Journal of Materials Processing Technology, vol. 118 (1–3): pp. 385-388, 2001.
  • S.O. Akande, "Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis", International Journal of Engineering Research & Technology (IJERT), Vol. 4, No. 04, 2015.
  • B. Vasudevarao, D.P. Natarajan, M. Henderson, "Sensitivity of RP surface finish to process parameter variation", Proceedings of solid free form fabrication, Austin, USA. 2000, pp. 252-258.
  • D.K. Ahn, H. Kim, S. Lee, "Surface roughness prediction using measured data and interpolation in layered manufacturing", Journal of Material Process Technology, vol. 209, pp. 664–671, 2009.
  • J. Martínez, J.L. Diéguez, A. Pereira, J.A. Pérez, "Modelization of surface roughness in FDM parts", AIP Conference Proceedings, vol.1431, pp. 849–1856, 2012.
  • F. Kartal, "Taguchi Metodolojisi ile Eriyik Yığma Modelleme Süreci Parametrelerinin Optimizasyonu", International Journal of 3D Printing Technologies and Digital Industry, vol. 1, no.1, pp. 49-56, 2017.
  • M. Sirvancı, Kalite İçin Deney Tasarımı Taguci Yaklasımı, Istanbul, Literatur Yayıncılık, 1997.
  • R. Leach, Fundamental Principles of Engineering Nanometrology, Second edition, Elsevier Inc., 2014, pp.252-253.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Binnur Sağbaş

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Sağbaş, B. (2018). Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 6(4), 1028-1037. https://doi.org/10.29130/dubited.422560
AMA Sağbaş B. Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process. DUBİTED. August 2018;6(4):1028-1037. doi:10.29130/dubited.422560
Chicago Sağbaş, Binnur. “Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 6, no. 4 (August 2018): 1028-37. https://doi.org/10.29130/dubited.422560.
EndNote Sağbaş B (August 1, 2018) Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 4 1028–1037.
IEEE B. Sağbaş, “Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process”, DUBİTED, vol. 6, no. 4, pp. 1028–1037, 2018, doi: 10.29130/dubited.422560.
ISNAD Sağbaş, Binnur. “Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6/4 (August 2018), 1028-1037. https://doi.org/10.29130/dubited.422560.
JAMA Sağbaş B. Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process. DUBİTED. 2018;6:1028–1037.
MLA Sağbaş, Binnur. “Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 6, no. 4, 2018, pp. 1028-37, doi:10.29130/dubited.422560.
Vancouver Sağbaş B. Surface Texture Characterization and Parameter Optimization of Fused Deposition Modelling Process. DUBİTED. 2018;6(4):1028-37.