Case Report
BibTex RIS Cite

Investigation of Polarization Dependent Interaction of Microwave and Plasma by Using Fluorescent Lamp Array

Year 2019, Volume: 7 Issue: 1, 215 - 222, 31.01.2019
https://doi.org/10.29130/dubited.433102

Abstract

In this study, polarization-dependent microwave interaction with a fluorescent lamp array was investigated. This
interaction was examined with a receiver and transmitter at 10.5 GHz frequency. The fluorescent lamp array was
driven by 220V/50 Hz mains. Measured microwave signal change was around 77.5% in the energized state and
8.7% in the non-energized state of the lamp array due to polarization. It has been shown that if an array is used as
a polarizer in this way, a polarizer with an extinction ratio of 6.35 dB can be obtained.

References

  • [1] B. Keržar and P. Weissglas, “Plasma microwave interaction”, Journal of Applied Physics, vol. 36, no. 8, pp. 2479-2484, 1965.
  • [2] H. K. Malik and A. K. Aria, “Microwave and plasma interaction in a rectangular waveguide: Effect of ponderomotive force”, Journal of Applied Physics, vol. 108, no. 1, 2010.
  • [3] G. J. M. Hagelaar, K. Hassouni and A. Gicquel, “Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor”, Journal of Applied Physics, vol. 96, no. 4, pp. 1819-1828, 2004.
  • [4] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, “Interaction and control of millimeter-waves with microplasma arrays”, Plasma Phys. Controlled Fusion, vol. 47, pp. 617–627, 2005.
  • [5] O. Sakai, T. Sakaguchi and K. Tachibana, “Photonic bands in two dimensional microplasma arrays I. Theoretical derivation of band structures of electromagnetic waves”, Journal of Applied Physics, vol. 101, 2007.
  • [6] Q. Li-Mei, Y. Zi-Qiang, L. Feng, G. Xi and L. Da-Zhi, “Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal”, Chin. Phys. B, vol. 19, no. 3, 2010.
  • [7] B. Wang, and M. A. Cappelli, “A tunable microwave plasma photonic crystal filter”, Applied Physics Letters, vol. 107, no. 17, 2015.
  • [8] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang and K. P. Loh, “Broadband graphene polarizer”, Nature photonics, vol. 5, no. 7, pp. 411-415, 2011.
  • [9] J. S. Cetnar, S. Vangala, W. Zhang, C. Pfeiffer, E. R. Brown and J. Guo, “High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates”, Optics Letters, vol. 42, no. 5, pp. 955-958, 2017.
  • [10] M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene”, Scientific Reports, vol. 5, 2015.
  • [11] S. J. Boehm, L. Kang, D. H. Werner and C. D. Keating, “Field‐switchable broadband polarizer based on reconfigurable nanowire assemblies”, Advanced Functional Materials, vol. 27, no. 5, 2017.
  • [12] W. McColl, C. Brooks and M. Brake, “Electron density and collision frequency of microwave-resonant-cavity-produced discharges”, Journal of Applied Physics, vol. 74, no. 6, pp. 3724–3735, 1993.
  • [13] C. Motta, A. Fonseca, G. Gomes and H. Maciel, “Electron number density and collision frequency measurements in a microwave surface wave discharge”, IEEE Conf. Pulsed Power Plasma Sci. Conf. (PPPS), 2001, pp. 1304–1307, Las Vegas NV-USA, doi: 10.1109/PPPS.2001.1001789, 2001.
  • [14] M. K. Howlader, Y. Yang and J. R. Roth, “Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics”, IEEE Transactions on Plasma Science, vol. 33, no. 3, pp. 1093-1099, 2005.
  • [15] B. Wang, and M. A. Cappelli, “A plasma photonic crystal bandgap device”, Applied Physics Letters, vol. 108, no. 16, 2016.
  • [16] Pasco Scientific, (May 19, 2017) Experiment Guide for the PASCO Model WA-931: Microwave Modulation Kit, [Online] Available: https://www.pasco.com/file_downloads/Downloads_Manuals/Microwave-Optics-Experiment Guide-WA-9314C.pdf.

Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi

Year 2019, Volume: 7 Issue: 1, 215 - 222, 31.01.2019
https://doi.org/10.29130/dubited.433102

Abstract

Yapılan bu çalışmada, floresan lamba dizisi ile kutuplanmaya bağlı mikrodalga etkileşimi incelenmiştir. Bu
etkileşim, 10,5 GHz frekansında alıcı ve verici kullanılarak araştırılmıştır. Floresan lamba dizisi 220V/50 Hz şehir
şebekesi kullanılarak sürülmüştür. Alıcıya ulaşan mikrodalga sinyalinde, lamba dizisinin enerjili durumda %77,5
ve enerjisiz durumunda ise %8,7 kutuplanmaya bağlı değişim gözlenmiştir. Tasarlanan floresan dizisinin
kutuplayıcı olarak kullanılması durumunda yok etme oranı 6,35 dB olan bir kutuplayıcı elde edilebileceği
gösterilmiştir.

References

  • [1] B. Keržar and P. Weissglas, “Plasma microwave interaction”, Journal of Applied Physics, vol. 36, no. 8, pp. 2479-2484, 1965.
  • [2] H. K. Malik and A. K. Aria, “Microwave and plasma interaction in a rectangular waveguide: Effect of ponderomotive force”, Journal of Applied Physics, vol. 108, no. 1, 2010.
  • [3] G. J. M. Hagelaar, K. Hassouni and A. Gicquel, “Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor”, Journal of Applied Physics, vol. 96, no. 4, pp. 1819-1828, 2004.
  • [4] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, “Interaction and control of millimeter-waves with microplasma arrays”, Plasma Phys. Controlled Fusion, vol. 47, pp. 617–627, 2005.
  • [5] O. Sakai, T. Sakaguchi and K. Tachibana, “Photonic bands in two dimensional microplasma arrays I. Theoretical derivation of band structures of electromagnetic waves”, Journal of Applied Physics, vol. 101, 2007.
  • [6] Q. Li-Mei, Y. Zi-Qiang, L. Feng, G. Xi and L. Da-Zhi, “Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal”, Chin. Phys. B, vol. 19, no. 3, 2010.
  • [7] B. Wang, and M. A. Cappelli, “A tunable microwave plasma photonic crystal filter”, Applied Physics Letters, vol. 107, no. 17, 2015.
  • [8] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang and K. P. Loh, “Broadband graphene polarizer”, Nature photonics, vol. 5, no. 7, pp. 411-415, 2011.
  • [9] J. S. Cetnar, S. Vangala, W. Zhang, C. Pfeiffer, E. R. Brown and J. Guo, “High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates”, Optics Letters, vol. 42, no. 5, pp. 955-958, 2017.
  • [10] M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene”, Scientific Reports, vol. 5, 2015.
  • [11] S. J. Boehm, L. Kang, D. H. Werner and C. D. Keating, “Field‐switchable broadband polarizer based on reconfigurable nanowire assemblies”, Advanced Functional Materials, vol. 27, no. 5, 2017.
  • [12] W. McColl, C. Brooks and M. Brake, “Electron density and collision frequency of microwave-resonant-cavity-produced discharges”, Journal of Applied Physics, vol. 74, no. 6, pp. 3724–3735, 1993.
  • [13] C. Motta, A. Fonseca, G. Gomes and H. Maciel, “Electron number density and collision frequency measurements in a microwave surface wave discharge”, IEEE Conf. Pulsed Power Plasma Sci. Conf. (PPPS), 2001, pp. 1304–1307, Las Vegas NV-USA, doi: 10.1109/PPPS.2001.1001789, 2001.
  • [14] M. K. Howlader, Y. Yang and J. R. Roth, “Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics”, IEEE Transactions on Plasma Science, vol. 33, no. 3, pp. 1093-1099, 2005.
  • [15] B. Wang, and M. A. Cappelli, “A plasma photonic crystal bandgap device”, Applied Physics Letters, vol. 108, no. 16, 2016.
  • [16] Pasco Scientific, (May 19, 2017) Experiment Guide for the PASCO Model WA-931: Microwave Modulation Kit, [Online] Available: https://www.pasco.com/file_downloads/Downloads_Manuals/Microwave-Optics-Experiment Guide-WA-9314C.pdf.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İbrahim Akkaya

Yavuz Öztürk

Publication Date January 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Akkaya, İ., & Öztürk, Y. (2019). Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(1), 215-222. https://doi.org/10.29130/dubited.433102
AMA Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DUBİTED. January 2019;7(1):215-222. doi:10.29130/dubited.433102
Chicago Akkaya, İbrahim, and Yavuz Öztürk. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, no. 1 (January 2019): 215-22. https://doi.org/10.29130/dubited.433102.
EndNote Akkaya İ, Öztürk Y (January 1, 2019) Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 1 215–222.
IEEE İ. Akkaya and Y. Öztürk, “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi”, DUBİTED, vol. 7, no. 1, pp. 215–222, 2019, doi: 10.29130/dubited.433102.
ISNAD Akkaya, İbrahim - Öztürk, Yavuz. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/1 (January 2019), 215-222. https://doi.org/10.29130/dubited.433102.
JAMA Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DUBİTED. 2019;7:215–222.
MLA Akkaya, İbrahim and Yavuz Öztürk. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 7, no. 1, 2019, pp. 215-22, doi:10.29130/dubited.433102.
Vancouver Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DUBİTED. 2019;7(1):215-22.