Research Article
BibTex RIS Cite

Kuaterniyon Matrisleri ile Bazı Fibonacci ve Lucas Kuaterniyon Özdeşlikleri

Year 2019, Volume: 7 Issue: 1, 606 - 615, 31.01.2019
https://doi.org/10.29130/dubited.488122

Abstract

Bu makalede en çok bilinen Fibonacci matrislerinden biri olan Q matrisi ve  Qn  n. Fibonacci kuaterniyonu olmak üzere MnQF Fibonacci kuaterniyon matrisi ele alınmıştır. Ayrıca bazı yeni kuaterniyon matrisleri tanımlanmıştır. Bu çalışmada terimleri Fibonacci ve Lucas kuaterniyonları olan yeni kuaterniyon matrislerini kullanarak, Fibonacci ve Lucas kuaterniyonları ile ilgili bazı özdeşlikler elde edilecektir. 

References

  • [1] B. Demirtürk Bitim and N. Topal, “Quaternions via generalized Fibonacci and Lucas number components,” Mat. Rep., accepted 24.04.2017.
  • [2] S. Halıcı, “On Fibonacci quaternions”, Adv. Appl. Clifford Algebr., vol. 22, no. 2, pp. 321-327, 2012.
  • [3] S. Halıcı, “On complex Fibonacci quaternions,” Adv. Appl. Clifford Algebr., vol. 23, no. 1, pp.105-112, 2013.
  • [4] W. R. Hamilton, Elements of Quaternions, London, Longmans and Green, 1866.
  • [5] A. F. Horadam, “Complex Fibonacci numbers and Fibonacci quaternions,” Amer. Math. Monthly, vol. 70, pp. 289-291, 1963.
  • [6] A. F. Horadam, “Quaternion recurrence relations,” Ulam Quarterly, vol. 2, no. 2, pp. 23-33, 1993.
  • [7] M. R. Iyer, “Some results on Fibonacci quaternions”, Fibonacci Quart., vol. 7, pp. 201-210, 1969.
  • [8] R. Keskin, B. Demirtürk, “Some new Fibonacci and Lucas identities by matrix methods”, Internat. J. Math. Ed. Sci. Tech., vol. 41, no. 3, pp. 379-387, 2009.
  • [9] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, John Wiley & Sons, 2001.
  • [10] B. K. Patel and P. K. Ray, “On the properties of (p,q) -Fibonacci and (p,q) -Lucas quaternions,” Mat. Rep., vol. 21, no. 1, pp. 1-10, 2019.
  • [11] P. Ribenboim, My Numbers, My Friends, New York, Springer Verlag, 2000.
  • [12] S. Vajda, Fibonacci and Lucas Numbers and The Golden Section, Chichester, Ellis Horwood Limited Publ., 1989.

Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices

Year 2019, Volume: 7 Issue: 1, 606 - 615, 31.01.2019
https://doi.org/10.29130/dubited.488122

Abstract

In this paper, we consider one of the most known
Fibonacci matrix  Q
 and the Fibonacci
quaternion matrix
  MQFn, where  Qn is the n-th Fibonacci quaternion.
In particular we define some new quaternion matrices. Our object is to derive
some identities concerning Fibonacci and Lucas quaternions by using some new
quaternion matrices with terms Fibonacci and Lucas numbers.










 

References

  • [1] B. Demirtürk Bitim and N. Topal, “Quaternions via generalized Fibonacci and Lucas number components,” Mat. Rep., accepted 24.04.2017.
  • [2] S. Halıcı, “On Fibonacci quaternions”, Adv. Appl. Clifford Algebr., vol. 22, no. 2, pp. 321-327, 2012.
  • [3] S. Halıcı, “On complex Fibonacci quaternions,” Adv. Appl. Clifford Algebr., vol. 23, no. 1, pp.105-112, 2013.
  • [4] W. R. Hamilton, Elements of Quaternions, London, Longmans and Green, 1866.
  • [5] A. F. Horadam, “Complex Fibonacci numbers and Fibonacci quaternions,” Amer. Math. Monthly, vol. 70, pp. 289-291, 1963.
  • [6] A. F. Horadam, “Quaternion recurrence relations,” Ulam Quarterly, vol. 2, no. 2, pp. 23-33, 1993.
  • [7] M. R. Iyer, “Some results on Fibonacci quaternions”, Fibonacci Quart., vol. 7, pp. 201-210, 1969.
  • [8] R. Keskin, B. Demirtürk, “Some new Fibonacci and Lucas identities by matrix methods”, Internat. J. Math. Ed. Sci. Tech., vol. 41, no. 3, pp. 379-387, 2009.
  • [9] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, John Wiley & Sons, 2001.
  • [10] B. K. Patel and P. K. Ray, “On the properties of (p,q) -Fibonacci and (p,q) -Lucas quaternions,” Mat. Rep., vol. 21, no. 1, pp. 1-10, 2019.
  • [11] P. Ribenboim, My Numbers, My Friends, New York, Springer Verlag, 2000.
  • [12] S. Vajda, Fibonacci and Lucas Numbers and The Golden Section, Chichester, Ellis Horwood Limited Publ., 1989.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bahar Demirtürk Bitim

Publication Date January 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Demirtürk Bitim, B. (2019). Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. Duzce University Journal of Science and Technology, 7(1), 606-615. https://doi.org/10.29130/dubited.488122
AMA Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DUBİTED. January 2019;7(1):606-615. doi:10.29130/dubited.488122
Chicago Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology 7, no. 1 (January 2019): 606-15. https://doi.org/10.29130/dubited.488122.
EndNote Demirtürk Bitim B (January 1, 2019) Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. Duzce University Journal of Science and Technology 7 1 606–615.
IEEE B. Demirtürk Bitim, “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”, DUBİTED, vol. 7, no. 1, pp. 606–615, 2019, doi: 10.29130/dubited.488122.
ISNAD Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology 7/1 (January 2019), 606-615. https://doi.org/10.29130/dubited.488122.
JAMA Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DUBİTED. 2019;7:606–615.
MLA Demirtürk Bitim, Bahar. “Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices”. Duzce University Journal of Science and Technology, vol. 7, no. 1, 2019, pp. 606-15, doi:10.29130/dubited.488122.
Vancouver Demirtürk Bitim B. Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices. DUBİTED. 2019;7(1):606-15.

Cited By

3x3 BOYUTLU ÖZEL PELL VE PELL LUCAS MATRİSLERİ
Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Fikri KÖKEN
https://doi.org/10.29130/dubited.582108