Research Article
BibTex RIS Cite

N,N'-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı

Year 2020, Volume: 8 Issue: 2, 1757 - 1770, 30.04.2020
https://doi.org/10.29130/dubited.656807

Abstract

Bu çalışmada, N,N'-bis(salisiliden)-1,3-propandiamin Schiff bazından hazırlanan çözeltilerin agregasyon kaynaklı emisyon artış özelliği incelenmiştir. Ligandın iki farklı çözücü ile farklı konsantrasyonlarda çözeltileri hazırlanmış ve bu çözeltilere değişik yüzdelerde (%1-50) su eklenmiştir. Schiff bazının etanol ile hazırlanmış 2×10-4 M’lık çözeltisinde, su derişimi arttıkça emisyon dalgaboyunun kırmızıya kaydığı ve floresans şiddetinin arttığı görülmüştür. Ayrıca, bu çözeltilerin floresans özelliklerinin zamana bağlı olarak değişimi incelenmiştir. Yapılan çalışmalar sonucunda, Schiff bazının, etanol içindeki su safsızlığının kalitatif ve kantitatif olarak belirlenmesinde kullanılabileceği öne sürülmüştür.

References

  • [1] C. Fana, J. Pei, J. Zhao, M. Huang, W. Tang, J. Hu, B. Cao, H. Tan, S. Tao and C. Yang, “A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs,” Organic Electronics, vol. 73, pp. 102–108, 2019.
  • [2] B. Huang, Y. Ji, Z. Li, N. Zhou, W. Jiang, Y. Feng, B. Lin and Y. Sun, “Simple aggregation–induced delayed fluorescence materials based on anthraquinone derivatives for highly efficient solution–processed red OLEDs,” Journal of Luminescence, vol. 187, pp. 414-420, 2017.
  • [3] A. Paun, N.D. Hadade, C.C. Paraschivescu and M. Matache, “1,3,4-Oxadiazoles as luminescent materials for organic light emitting diodes via cross-coupling reactions,” Journal of Materials Chemistry C, vol. 4, pp. 8596-8610, 2016.
  • [4] Z. Ma, X. Wang, C. Wang, X. Chen and Q. Lv, “A sensitive and selective fluorescence probe for detection of hypochlorite (OCl−) and its bioimaging in live cells,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 213, pp. 370-374, 2019.
  • [5] L. Jin, W. Wang, Z. Shen, J. Xu, Q. Wang and C. Zhao, “A new coumarin-based fluorescence “turn-on” sensor for Al(III) ions and its bioimaging in cell,” Journal of Molecular Structure, vol. 1197, pp. 73-79, 2019.
  • [6] F. Huo, Z. Kanga, M. Zhu, C. Tan, Y. Tang, Y. Liu and W. Zhang, “Metal-triggered fluorescence enhancement of multicolor carbon dots in sensing and bioimaging,” Optical Materials, vol. 94, pp. 363-370, 2019.
  • [7] R. Bandi, R. Dadigala, B.R. Gangapuram and V. Guttena, “Green synthesis of highly fluorescent nitrogen – doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging,” Journal of Photochemistry & Photobiology, B: Biology, vol. 178, pp. 330-338, 2018.
  • [8] F. Jina, T. Lu, P. Wang, Z. Rong, X. Wu, L. Qiao, Y. Liu, R. Liao and D. Tao, “Crystal structures, two-photon excited fluorescence and bioimaging of Zn(II) complexes based on D-π-A structural triphenylamine derivative,” Journal of Luminescence, vol. 192, pp. 1127-1132, 2017.
  • [9] J. Xu, N. Liu, C. Hao, Q. Han, Y. Duan and J. Wu, “Novel fluorescence “on-off-on” peptide-based chemosensor for simultaneous detection of Cu2+, Ag+ and S2−,” Sensors and Actuators B: Chemical, vol. 280, pp. 129-137, 2019.
  • [10] X. Gong, H. Zhang, N. Jiang, L. Wang and G. Wang, “Oxadiazole-based ‘on-off’ fluorescence chemosensor for rapid recognition and detection of Fe2+ and Fe3+ in aqueous solution and in living cells,” Microchemical Journal, vol. 145, pp. 435-443, 2019.
  • [11] Q. Wu, K. Wang, Z. Wang, Y. Sun, D. Cao, Z. Liu, R. Guan, S. Zhao and X. Yu, “Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells,” Talanta, vol. 181, pp. 118-124, 2018.
  • [12] E. Ergun, Ü. Ergun, Ö. İleri and M.F. Küçükmüzevir, “An investigation of some Schiff base derivatives as chemosensors for Zn(II): the performance characteristics and potential applications,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 203, pp. 273-286, 2018.
  • [13] P. A. More and G. S. Shankarling, “Reversible ‘turn off’ fluorescence response of Cu2+ ions towards 2-pyridyl quinoline based chemosensor with visible colour change,” Sensors and Actuators B: Chemical, vol. 241, pp. 552-559, 2017.
  • [14] J. Qi, X. Hu, X. Dong, Y. Lu, H. Lu, W. Zhao and W. Wu, “Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool,” Advanced Drug Delivery Reviews, vol. 143, pp. 206-225, 2019.
  • [15] Y. Huang, J. Xing, Q. Gong, L. Chen, G. Liu, C. Yao, Z. Wang, H. Zhang, Z. Chen and Q. Zhang, “Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers,” Nature Communications, vol. 10, pp. 169-178, 2019.
  • [16] T. Forster and K. Kasper, “Ein konzentrationsumschlag der fluoreszenz des pyrens,” Zeitschrift für Elektrochemie, vol. 59, pp. 976-980, 1955.
  • [17] J. B. Birks, Photophysics of Aromatic Molecules, 1st ed., London, England: Wiley- InterScience, 1970, pp. 704.
  • [18] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhuc and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chemical Communications, vol. 21, pp. 1740-1741, 2001.
  • [19] M. F. Küçükmüzevir, Ö. İleri, E. Ergun ve Ü. Ergun, “ONNO tipi bir Schiff bazı ve indirgenmiş türevinin çeşitli metallerle yaptığı komplekslerin floresans özelliklerinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 4, ss. 862-872, 2016.
  • [20] B. Zeybek, B. Meltem Ateş, F. Ercan, M. Levent Aksu, E. Kılıç and O. Atakol, “The effect of ligand basicity on the thermal stability of heterodinuclear NiII–ZnII complexes,” Journal of Thermal Analysis and Calorimetry, vol. 98, pp. 377-385, 2009.
  • [21] P. Yadava, A. K. Singh, C. Upadhyay and V. P. Singh, “Photoluminescence behaviour of a stimuli responsive Schiff base: aggregation induced emission and piezochromism,” Dyes and Pigments, vol. 160, pp. 731-739, 2019.
  • [22] S. S. Pasha, H. R. Yadav, A. R. Choudhury and I. R. Laskar, “Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: Study of mechanoluminescence and sensitive Zn(II) sensing,” Journal of Materials Chemistry C, vol. 5, pp. 9651-9658, 2017.
  • [23] F. Wu, G. Xu, X. Zeng, L. Mu, C. Redshaw and G. Wei, “Characterization of the aggregation-induced enhanced emission of N,N′-bis(4-methoxysalicylide)benzene-1,4-diamine,” Journal of Fluorescence, vol. 25, pp. 1183-1189, 2015.
  • [24] M. Shellaiah, Y. H. Wu, A. Singh, M. V. Ramakrishnam Raju and H. C. Lin, “Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions,” Journal of Materials Chemistry A, vol. 1, pp. 1310-1318, 2013.
  • [25] X. F. Li, Z. G. Chi, B. J. Xu, H. Y. Li, X. Q. Zhang, W. Zhou, Y. Zhang, S. W. Liu and J. R. Xu, “Synthesis and characterization of triphenylethylene derivatives with aggregation-induced emission characteristics,” Journal of Fluorescence, vol. 21, pp. 1969-1977, 2011.
  • [26] W. Tang, Y. Xiang, and A. Tong, “Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics,” The Journal of Organic Chemistry, vol. 74, pp. 2163-2166, 2009.
  • [27] M. Más-Montoya and R. A. J. Janssen, “The effect of H- and J-Aggregation on the photophysical and photovoltaic properties of small thiophene–pyridine–DPP molecules for bulk-heterojunction solar cells,” Advanced Functional Materials, vol. 27, pp. 1605779, 2017.
  • [28] Z. Arsov, I. Urbančič and J. Štrancar, “Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 190, pp. 486-493, 2018.
  • [29] N. Miengmern, A. Koonwong, S. Sriyab, A. Suramitr, R. P. Poo-arporn, S. Hannongbua and S. Suramitr, “Aggregation-induced emission enhancement (AIEE) of N,N′-Bis(Salicylidene)-p-phenylenediamine Schiff base: synthesis, photophysical properties and its DFT studies,” Journal of Luminescence, vol. 210, pp. 493-500, 2019.

Aggregation-Induced Emission Enhancement of N,N′-bis (Salicylidene)-1,3-Propanediamine Schiff Base

Year 2020, Volume: 8 Issue: 2, 1757 - 1770, 30.04.2020
https://doi.org/10.29130/dubited.656807

Abstract

In this study, aggregation-induced emission enhancement feature of the solutions prepared from N,N'-bis (salicylidene) -1,3-propanediamine Schiff base was investigated. The ligand solution were prepared at different concentrations with two different solvents and water was added to these solutions at varying percentages (1-50%). It was observed that emission wavelength was red-shifted and the fluorescence intensity was enhanced, as the concentration of water increased in 2×10-4 M ethanolic solution of Schiff base. In addition, time-dependent changes in the fluorescence properties of these solutions were investigated. As a result, it has been suggested that Schiff base can be used for qualitative and quantitative determination of water impurity in ethanol. 

References

  • [1] C. Fana, J. Pei, J. Zhao, M. Huang, W. Tang, J. Hu, B. Cao, H. Tan, S. Tao and C. Yang, “A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs,” Organic Electronics, vol. 73, pp. 102–108, 2019.
  • [2] B. Huang, Y. Ji, Z. Li, N. Zhou, W. Jiang, Y. Feng, B. Lin and Y. Sun, “Simple aggregation–induced delayed fluorescence materials based on anthraquinone derivatives for highly efficient solution–processed red OLEDs,” Journal of Luminescence, vol. 187, pp. 414-420, 2017.
  • [3] A. Paun, N.D. Hadade, C.C. Paraschivescu and M. Matache, “1,3,4-Oxadiazoles as luminescent materials for organic light emitting diodes via cross-coupling reactions,” Journal of Materials Chemistry C, vol. 4, pp. 8596-8610, 2016.
  • [4] Z. Ma, X. Wang, C. Wang, X. Chen and Q. Lv, “A sensitive and selective fluorescence probe for detection of hypochlorite (OCl−) and its bioimaging in live cells,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 213, pp. 370-374, 2019.
  • [5] L. Jin, W. Wang, Z. Shen, J. Xu, Q. Wang and C. Zhao, “A new coumarin-based fluorescence “turn-on” sensor for Al(III) ions and its bioimaging in cell,” Journal of Molecular Structure, vol. 1197, pp. 73-79, 2019.
  • [6] F. Huo, Z. Kanga, M. Zhu, C. Tan, Y. Tang, Y. Liu and W. Zhang, “Metal-triggered fluorescence enhancement of multicolor carbon dots in sensing and bioimaging,” Optical Materials, vol. 94, pp. 363-370, 2019.
  • [7] R. Bandi, R. Dadigala, B.R. Gangapuram and V. Guttena, “Green synthesis of highly fluorescent nitrogen – doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging,” Journal of Photochemistry & Photobiology, B: Biology, vol. 178, pp. 330-338, 2018.
  • [8] F. Jina, T. Lu, P. Wang, Z. Rong, X. Wu, L. Qiao, Y. Liu, R. Liao and D. Tao, “Crystal structures, two-photon excited fluorescence and bioimaging of Zn(II) complexes based on D-π-A structural triphenylamine derivative,” Journal of Luminescence, vol. 192, pp. 1127-1132, 2017.
  • [9] J. Xu, N. Liu, C. Hao, Q. Han, Y. Duan and J. Wu, “Novel fluorescence “on-off-on” peptide-based chemosensor for simultaneous detection of Cu2+, Ag+ and S2−,” Sensors and Actuators B: Chemical, vol. 280, pp. 129-137, 2019.
  • [10] X. Gong, H. Zhang, N. Jiang, L. Wang and G. Wang, “Oxadiazole-based ‘on-off’ fluorescence chemosensor for rapid recognition and detection of Fe2+ and Fe3+ in aqueous solution and in living cells,” Microchemical Journal, vol. 145, pp. 435-443, 2019.
  • [11] Q. Wu, K. Wang, Z. Wang, Y. Sun, D. Cao, Z. Liu, R. Guan, S. Zhao and X. Yu, “Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells,” Talanta, vol. 181, pp. 118-124, 2018.
  • [12] E. Ergun, Ü. Ergun, Ö. İleri and M.F. Küçükmüzevir, “An investigation of some Schiff base derivatives as chemosensors for Zn(II): the performance characteristics and potential applications,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 203, pp. 273-286, 2018.
  • [13] P. A. More and G. S. Shankarling, “Reversible ‘turn off’ fluorescence response of Cu2+ ions towards 2-pyridyl quinoline based chemosensor with visible colour change,” Sensors and Actuators B: Chemical, vol. 241, pp. 552-559, 2017.
  • [14] J. Qi, X. Hu, X. Dong, Y. Lu, H. Lu, W. Zhao and W. Wu, “Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool,” Advanced Drug Delivery Reviews, vol. 143, pp. 206-225, 2019.
  • [15] Y. Huang, J. Xing, Q. Gong, L. Chen, G. Liu, C. Yao, Z. Wang, H. Zhang, Z. Chen and Q. Zhang, “Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers,” Nature Communications, vol. 10, pp. 169-178, 2019.
  • [16] T. Forster and K. Kasper, “Ein konzentrationsumschlag der fluoreszenz des pyrens,” Zeitschrift für Elektrochemie, vol. 59, pp. 976-980, 1955.
  • [17] J. B. Birks, Photophysics of Aromatic Molecules, 1st ed., London, England: Wiley- InterScience, 1970, pp. 704.
  • [18] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhuc and B. Z. Tang, “Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chemical Communications, vol. 21, pp. 1740-1741, 2001.
  • [19] M. F. Küçükmüzevir, Ö. İleri, E. Ergun ve Ü. Ergun, “ONNO tipi bir Schiff bazı ve indirgenmiş türevinin çeşitli metallerle yaptığı komplekslerin floresans özelliklerinin incelenmesi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 4, ss. 862-872, 2016.
  • [20] B. Zeybek, B. Meltem Ateş, F. Ercan, M. Levent Aksu, E. Kılıç and O. Atakol, “The effect of ligand basicity on the thermal stability of heterodinuclear NiII–ZnII complexes,” Journal of Thermal Analysis and Calorimetry, vol. 98, pp. 377-385, 2009.
  • [21] P. Yadava, A. K. Singh, C. Upadhyay and V. P. Singh, “Photoluminescence behaviour of a stimuli responsive Schiff base: aggregation induced emission and piezochromism,” Dyes and Pigments, vol. 160, pp. 731-739, 2019.
  • [22] S. S. Pasha, H. R. Yadav, A. R. Choudhury and I. R. Laskar, “Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: Study of mechanoluminescence and sensitive Zn(II) sensing,” Journal of Materials Chemistry C, vol. 5, pp. 9651-9658, 2017.
  • [23] F. Wu, G. Xu, X. Zeng, L. Mu, C. Redshaw and G. Wei, “Characterization of the aggregation-induced enhanced emission of N,N′-bis(4-methoxysalicylide)benzene-1,4-diamine,” Journal of Fluorescence, vol. 25, pp. 1183-1189, 2015.
  • [24] M. Shellaiah, Y. H. Wu, A. Singh, M. V. Ramakrishnam Raju and H. C. Lin, “Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions,” Journal of Materials Chemistry A, vol. 1, pp. 1310-1318, 2013.
  • [25] X. F. Li, Z. G. Chi, B. J. Xu, H. Y. Li, X. Q. Zhang, W. Zhou, Y. Zhang, S. W. Liu and J. R. Xu, “Synthesis and characterization of triphenylethylene derivatives with aggregation-induced emission characteristics,” Journal of Fluorescence, vol. 21, pp. 1969-1977, 2011.
  • [26] W. Tang, Y. Xiang, and A. Tong, “Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics,” The Journal of Organic Chemistry, vol. 74, pp. 2163-2166, 2009.
  • [27] M. Más-Montoya and R. A. J. Janssen, “The effect of H- and J-Aggregation on the photophysical and photovoltaic properties of small thiophene–pyridine–DPP molecules for bulk-heterojunction solar cells,” Advanced Functional Materials, vol. 27, pp. 1605779, 2017.
  • [28] Z. Arsov, I. Urbančič and J. Štrancar, “Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 190, pp. 486-493, 2018.
  • [29] N. Miengmern, A. Koonwong, S. Sriyab, A. Suramitr, R. P. Poo-arporn, S. Hannongbua and S. Suramitr, “Aggregation-induced emission enhancement (AIEE) of N,N′-Bis(Salicylidene)-p-phenylenediamine Schiff base: synthesis, photophysical properties and its DFT studies,” Journal of Luminescence, vol. 210, pp. 493-500, 2019.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ece Ergun 0000-0001-5645-5571

Ümit Ergun 0000-0002-1830-1181

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Ergun, E., & Ergun, Ü. (2020). N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(2), 1757-1770. https://doi.org/10.29130/dubited.656807
AMA Ergun E, Ergun Ü. N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı. DUBİTED. April 2020;8(2):1757-1770. doi:10.29130/dubited.656807
Chicago Ergun, Ece, and Ümit Ergun. “N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 2 (April 2020): 1757-70. https://doi.org/10.29130/dubited.656807.
EndNote Ergun E, Ergun Ü (April 1, 2020) N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 2 1757–1770.
IEEE E. Ergun and Ü. Ergun, “N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı”, DUBİTED, vol. 8, no. 2, pp. 1757–1770, 2020, doi: 10.29130/dubited.656807.
ISNAD Ergun, Ece - Ergun, Ümit. “N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/2 (April 2020), 1757-1770. https://doi.org/10.29130/dubited.656807.
JAMA Ergun E, Ergun Ü. N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı. DUBİTED. 2020;8:1757–1770.
MLA Ergun, Ece and Ümit Ergun. “N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 2, 2020, pp. 1757-70, doi:10.29130/dubited.656807.
Vancouver Ergun E, Ergun Ü. N,N’-Bis(Salisiliden)-1,3-Propandiamin Schiff Bazının Agregasyon Kaynaklı Emisyon Artışı. DUBİTED. 2020;8(2):1757-70.