Research Article
BibTex RIS Cite

Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi

Year 2020, Volume: 8 Issue: 3, 1852 - 1863, 31.07.2020
https://doi.org/10.29130/dubited.692558

Abstract

Bu çalışmada PEM yakıt hücresinin katot gaz akış kanalında oluşan sıvı su damlacıklarını gözlemlemek için bir tarafı şeffaf olan bipolar plaka tasarımı yapılmıştır. Katot gaz akış kanalının şeffaf olarak imal edilmesi yakıt hücresi içinde oluşan su damlacığının gözlemlenebilmesini mümkün kılacaktır. İmalatı yapılan bipolar plaka malzemesinin gözlem imkanı sağlamasının yanı sıra elektron iletimini de sağlaması gerekmektedir. Bu yüzden; şeffaf yakıt pili oluşturmak için 1 mm kalınlığında saç levha üzerine kanal tasarımı imal edilmiş ve saç levha üzerine 10 mm kalınlığında polikarbonat levha monte edilmiştir. Şeffaf olarak imal edilen yakıt pili deneysel performans sonuçları alüminyum levha üzerine imal edilen kanal tasarımının deneysel performans sonuçlarıyla kıyaslanmıştır. Sonuç olarak, kanal içeresindeki sıvı su oluşumunu gözlemlemek isteyen araştırmacılara şeffaf bipolar plaka imalatı ve imal edilen bipolar plakaların deneysel performansı hakkında çıkarımlarda bulunulmuştur.

References

  • [1] K. Geliş, “Farklı akış alanı tasarımlarının yakıt pili performansına etkisinin deneysel ve sayısal incelenmesi,” Doktora tezi, Makine Mühendisliği Bölümü, Erzurum Teknik Üniversitesi, Erzurum, Türkiye, 2019.
  • [2] X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” Int. J. Hydrogen Energy, vol. 30, no. 4, pp. 359–371, 2005.
  • [3] M. Rahimi-Esbo, A. Ramiar, A. A. Ranjbar and E. Alizadeh, “Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 11673–11688, 2017.
  • [4] M. Ghasemi, A. Ramiar, A. A. Ranjbar and S. M. Rahgoshay, “A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance,” Int. J. Hydrogen Energy, vol. 42, no. 38, pp. 24319–24337, 2017.
  • [5] J. G. Carton, V. Lawlor, A. G. Olabi, C. Hochenauer and G. Zauner, “Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels,” Energy, vol. 39, no. 1, pp. 63–73, 2012.
  • [6] N. W. Lee, S. Il Kim, Y. S. Kim, S. H. Kim, B. K. Ahn and M. S. Kim, “An effective discharge method for condensed water inside the GDL using pressure gradient of a PEM fuel cell,” Int. J. Heat Mass Transf., vol. 85, pp. 703–710, 2015.
  • [7] R. M. Aslam, D. B. Ingham, M. S. Ismail, K. J. Hughes, L. Ma and M. Pourkashanian, “Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels,” J. Energy Inst., vol. 92, pp. 1–8, 2018.
  • [8] P. Pei, Y. Li, H. Xu and Z. Wu, “A review on water fault diagnosis of PEMFC associated with the pressure drop,” Appl. Energy, vol. 173, pp. 366–385, 2016.
  • [9] J. Bachman, M. Charvet, A. Santamaria, H. Y. Tang, J. W. Park and R. Walker, “Experimental investigation of the effect of channel length on performance and water accumulation in a PEMFC parallel flow field,” Int. J. Hydrogen Energy, vol. 37, no. 22, pp. 17172–17179, 2012.
  • [10] S. Shimpalee, V. Lilavivat, J. W. Van Zee, H. McCrabb and A. Lozano-Morales, “Understanding the effect of channel tolerances on performance of PEMFCs,” Int. J. Hydrogen Energy, vol. 36, no. 19, pp. 12512–12523, 2011.
  • [11] S. Chen and Y. Wu, “Gravity effect on water discharged in PEM fuel cell cathode,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2888–2893, 2010.
  • [12] E. E. Kahveci and I. Taymaz, “Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology,” Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10655–10663, 2014.
  • [13] A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano and M. Garmendia Mujika, “Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15256–15287, 2012.
  • [14] D. hui Wen, L. zhi Yin, Z. yu Piao, C. da Lu, G. Li and Q. hui Leng, “Performance investigation of proton exchange membrane fuel cell with intersectant flow field,” Int. J. Heat Mass Transf., vol. 121, pp. 775–787, 2018.
  • [15] N. J. Cooper, A. D. Santamaria, M. K. Becton and J. W. Park, “Investigation of the performance improvement in decreasing aspect ratio interdigitated flow field PEMFCs,” Energy Convers. Manag., vol. 136, pp. 307–317, 2017.
  • [16] M. Hu and G. Cao, “Research on the performance differences between a standard PEMFC single cell and transparent PEMFC single cells using optimized transparent flow field unit-Part I: Design optimization of a transparent flow field unit,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 2955–2966, 2016.
  • [17] B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini and M. I. Rosli, “Effects of flow field design on water management and reactant distribution in PEMFC: a review,” Ionics (Kiel)., vol. 22, no. 3, pp. 301–316, 2016.
  • [18] N. Akhtar, A. Qureshi, J. Scholta, C. Hartnig, M. Messerschmidt and W. Lehnert, “Investigation of water droplet kinetics and optimization of channel geometry for PEM fuel cell cathodes,” Int. J. Hydrogen Energy, vol. 34, no. 7, pp. 3104–3111, 2009.
  • [19] R. Banerjee, D. Howe, V. Mejia and S. G. Kandlikar, “Experimental validation of two-phase pressure drop multiplier as a diagnostic tool for characterizing PEM fuel cell performance,” Int. J. Hydrogen Energy, vol. 39, no. 31, pp. 17791–17801, 2014.
  • [20] Y. Li vd., “Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells,” Appl. Energy, vol. 224, no. February, pp. 42–51, 2018.
  • [21] P. Wawdee, S. Limtrakul, T. Vatanatham and M. W. Fowler, “Water transport in a PEM fuel cell with slanted channel flow field plates,” Int. J. Hydrogen Energy, vol. 40, no. 9, pp. 3739–3748, 2015.
  • [22] M. E. A. Ben Amara and S. Ben Nasrallah, “Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel,” Int. J. Hydrogen Energy, vol. 40, no. 2, pp. 1333–1342, 2015.
  • [23] Z. Wang, Y. Zeng, S. Sun, Z. Shao and B. Yi, “Improvement of PEMFC water management by employing water transport plate as bipolar plate,” Int. J. Hydrogen Energy, vol. 42, no. 34, pp. 21922–21929, 2017.
  • [24] H. Heidary, M. J. Kermani, A. K. Prasad, S. G. Advani and B. Dabir, “Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2265–2277, 2017.
  • [25] Y. Hou, G. Zhang, Y. Qin, Q. Du and K. Jiao, “Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells,” Int. J. Hydrogen Energy, vol. 42, no. 5, pp. 3250–3258, 2017.
  • [26] M. Rahimi-Esbo, A. A. Ranjbar, A. Ramiar, E. Alizadeh and M. Aghaee, “Improving PEM fuel cell performance and effective water removal by using a novel gas flow field,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 3023–3037, 2016.
  • [27] E. Alizadeh, M. Rahimi-Esbo, S. M. Rahgoshay, S. H. M. Saadat and M. Khorshidian, “Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell,” Int. J. Hydrogen Energy, vol. 42, no. 21, pp. 14708–14724, 2017.
  • [28] Y. Vazifeshenas, K. Sedighi and M. Shakeri, “Numerical investigation of a novel compound flow-field for PEMFC performance improvement,” Int. J. Hydrogen Energy, vol. 40, no. 43, pp. 15032–15039, 2015.
  • [29] V. Lilavivat, S. Shimpalee, J. W. Van Zee, H. Xu and C. K. Mittelsteadt, “Current Distribution Mapping for PEMFCs,” Electrochim. Acta, vol. 174, pp. 1253–1260, 2015.
  • [30] E. Afshari, M. Ziaei-Rad and M. M. Dehkordi, “Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells,” J. Energy Inst., vol. 90, no. 5, pp. 752–763, 2017.
  • [31] T. F. Cao, H. Lin, L. Chen, Y. L. He and W. Q. Tao, “Numerical investigation of the coupled water and thermal management in PEM fuel cell,” Appl. Energy, vol. 112, pp. 1115–1125, 2013.
  • [32] J. Nie and Y. Chen, “Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell,” Int. J. Hydrogen Energy, vol. 35, no. 8, pp. 3183–3197, 2010.
  • [33] E. Mancusi, É. Fontana, A. A. Ulson De Souza and S. M. A. Guelli Ulson De Souza, “Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design,” Int. J. Hydrogen Energy, vol. 39, no. 5, pp. 2261–2273, 2014.
  • [34] J. Kim, G. Luo and C. Y. Wang, “Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells,” J. Power Sources, vol. 365, pp. 419–429, 2017.
  • [35] M. U. Karaoğlan ve N. S. Kurulay, “Pem yakit hücresi̇ modeli̇,” Mühendis ve Makina, c. 55, s. 657, ss. 51–58, 2014.
  • [36] B. Yılmaz, “Polimer elektrolit membranlı yakıt pilleri için anot üretimi,” Yüksek Lisans tezi, Makine Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2006.
Year 2020, Volume: 8 Issue: 3, 1852 - 1863, 31.07.2020
https://doi.org/10.29130/dubited.692558

Abstract

References

  • [1] K. Geliş, “Farklı akış alanı tasarımlarının yakıt pili performansına etkisinin deneysel ve sayısal incelenmesi,” Doktora tezi, Makine Mühendisliği Bölümü, Erzurum Teknik Üniversitesi, Erzurum, Türkiye, 2019.
  • [2] X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” Int. J. Hydrogen Energy, vol. 30, no. 4, pp. 359–371, 2005.
  • [3] M. Rahimi-Esbo, A. Ramiar, A. A. Ranjbar and E. Alizadeh, “Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 11673–11688, 2017.
  • [4] M. Ghasemi, A. Ramiar, A. A. Ranjbar and S. M. Rahgoshay, “A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance,” Int. J. Hydrogen Energy, vol. 42, no. 38, pp. 24319–24337, 2017.
  • [5] J. G. Carton, V. Lawlor, A. G. Olabi, C. Hochenauer and G. Zauner, “Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels,” Energy, vol. 39, no. 1, pp. 63–73, 2012.
  • [6] N. W. Lee, S. Il Kim, Y. S. Kim, S. H. Kim, B. K. Ahn and M. S. Kim, “An effective discharge method for condensed water inside the GDL using pressure gradient of a PEM fuel cell,” Int. J. Heat Mass Transf., vol. 85, pp. 703–710, 2015.
  • [7] R. M. Aslam, D. B. Ingham, M. S. Ismail, K. J. Hughes, L. Ma and M. Pourkashanian, “Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels,” J. Energy Inst., vol. 92, pp. 1–8, 2018.
  • [8] P. Pei, Y. Li, H. Xu and Z. Wu, “A review on water fault diagnosis of PEMFC associated with the pressure drop,” Appl. Energy, vol. 173, pp. 366–385, 2016.
  • [9] J. Bachman, M. Charvet, A. Santamaria, H. Y. Tang, J. W. Park and R. Walker, “Experimental investigation of the effect of channel length on performance and water accumulation in a PEMFC parallel flow field,” Int. J. Hydrogen Energy, vol. 37, no. 22, pp. 17172–17179, 2012.
  • [10] S. Shimpalee, V. Lilavivat, J. W. Van Zee, H. McCrabb and A. Lozano-Morales, “Understanding the effect of channel tolerances on performance of PEMFCs,” Int. J. Hydrogen Energy, vol. 36, no. 19, pp. 12512–12523, 2011.
  • [11] S. Chen and Y. Wu, “Gravity effect on water discharged in PEM fuel cell cathode,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2888–2893, 2010.
  • [12] E. E. Kahveci and I. Taymaz, “Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology,” Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10655–10663, 2014.
  • [13] A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano and M. Garmendia Mujika, “Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15256–15287, 2012.
  • [14] D. hui Wen, L. zhi Yin, Z. yu Piao, C. da Lu, G. Li and Q. hui Leng, “Performance investigation of proton exchange membrane fuel cell with intersectant flow field,” Int. J. Heat Mass Transf., vol. 121, pp. 775–787, 2018.
  • [15] N. J. Cooper, A. D. Santamaria, M. K. Becton and J. W. Park, “Investigation of the performance improvement in decreasing aspect ratio interdigitated flow field PEMFCs,” Energy Convers. Manag., vol. 136, pp. 307–317, 2017.
  • [16] M. Hu and G. Cao, “Research on the performance differences between a standard PEMFC single cell and transparent PEMFC single cells using optimized transparent flow field unit-Part I: Design optimization of a transparent flow field unit,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 2955–2966, 2016.
  • [17] B. H. Lim, E. H. Majlan, W. R. W. Daud, T. Husaini and M. I. Rosli, “Effects of flow field design on water management and reactant distribution in PEMFC: a review,” Ionics (Kiel)., vol. 22, no. 3, pp. 301–316, 2016.
  • [18] N. Akhtar, A. Qureshi, J. Scholta, C. Hartnig, M. Messerschmidt and W. Lehnert, “Investigation of water droplet kinetics and optimization of channel geometry for PEM fuel cell cathodes,” Int. J. Hydrogen Energy, vol. 34, no. 7, pp. 3104–3111, 2009.
  • [19] R. Banerjee, D. Howe, V. Mejia and S. G. Kandlikar, “Experimental validation of two-phase pressure drop multiplier as a diagnostic tool for characterizing PEM fuel cell performance,” Int. J. Hydrogen Energy, vol. 39, no. 31, pp. 17791–17801, 2014.
  • [20] Y. Li vd., “Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells,” Appl. Energy, vol. 224, no. February, pp. 42–51, 2018.
  • [21] P. Wawdee, S. Limtrakul, T. Vatanatham and M. W. Fowler, “Water transport in a PEM fuel cell with slanted channel flow field plates,” Int. J. Hydrogen Energy, vol. 40, no. 9, pp. 3739–3748, 2015.
  • [22] M. E. A. Ben Amara and S. Ben Nasrallah, “Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel,” Int. J. Hydrogen Energy, vol. 40, no. 2, pp. 1333–1342, 2015.
  • [23] Z. Wang, Y. Zeng, S. Sun, Z. Shao and B. Yi, “Improvement of PEMFC water management by employing water transport plate as bipolar plate,” Int. J. Hydrogen Energy, vol. 42, no. 34, pp. 21922–21929, 2017.
  • [24] H. Heidary, M. J. Kermani, A. K. Prasad, S. G. Advani and B. Dabir, “Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2265–2277, 2017.
  • [25] Y. Hou, G. Zhang, Y. Qin, Q. Du and K. Jiao, “Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells,” Int. J. Hydrogen Energy, vol. 42, no. 5, pp. 3250–3258, 2017.
  • [26] M. Rahimi-Esbo, A. A. Ranjbar, A. Ramiar, E. Alizadeh and M. Aghaee, “Improving PEM fuel cell performance and effective water removal by using a novel gas flow field,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 3023–3037, 2016.
  • [27] E. Alizadeh, M. Rahimi-Esbo, S. M. Rahgoshay, S. H. M. Saadat and M. Khorshidian, “Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell,” Int. J. Hydrogen Energy, vol. 42, no. 21, pp. 14708–14724, 2017.
  • [28] Y. Vazifeshenas, K. Sedighi and M. Shakeri, “Numerical investigation of a novel compound flow-field for PEMFC performance improvement,” Int. J. Hydrogen Energy, vol. 40, no. 43, pp. 15032–15039, 2015.
  • [29] V. Lilavivat, S. Shimpalee, J. W. Van Zee, H. Xu and C. K. Mittelsteadt, “Current Distribution Mapping for PEMFCs,” Electrochim. Acta, vol. 174, pp. 1253–1260, 2015.
  • [30] E. Afshari, M. Ziaei-Rad and M. M. Dehkordi, “Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells,” J. Energy Inst., vol. 90, no. 5, pp. 752–763, 2017.
  • [31] T. F. Cao, H. Lin, L. Chen, Y. L. He and W. Q. Tao, “Numerical investigation of the coupled water and thermal management in PEM fuel cell,” Appl. Energy, vol. 112, pp. 1115–1125, 2013.
  • [32] J. Nie and Y. Chen, “Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell,” Int. J. Hydrogen Energy, vol. 35, no. 8, pp. 3183–3197, 2010.
  • [33] E. Mancusi, É. Fontana, A. A. Ulson De Souza and S. M. A. Guelli Ulson De Souza, “Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design,” Int. J. Hydrogen Energy, vol. 39, no. 5, pp. 2261–2273, 2014.
  • [34] J. Kim, G. Luo and C. Y. Wang, “Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells,” J. Power Sources, vol. 365, pp. 419–429, 2017.
  • [35] M. U. Karaoğlan ve N. S. Kurulay, “Pem yakit hücresi̇ modeli̇,” Mühendis ve Makina, c. 55, s. 657, ss. 51–58, 2014.
  • [36] B. Yılmaz, “Polimer elektrolit membranlı yakıt pilleri için anot üretimi,” Yüksek Lisans tezi, Makine Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2006.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kadir Geliş 0000-0001-8612-2233

Publication Date July 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Geliş, K. (2020). Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi. Duzce University Journal of Science and Technology, 8(3), 1852-1863. https://doi.org/10.29130/dubited.692558
AMA Geliş K. Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi. DUBİTED. July 2020;8(3):1852-1863. doi:10.29130/dubited.692558
Chicago Geliş, Kadir. “Şeffaf Bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi”. Duzce University Journal of Science and Technology 8, no. 3 (July 2020): 1852-63. https://doi.org/10.29130/dubited.692558.
EndNote Geliş K (July 1, 2020) Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi. Duzce University Journal of Science and Technology 8 3 1852–1863.
IEEE K. Geliş, “Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi”, DUBİTED, vol. 8, no. 3, pp. 1852–1863, 2020, doi: 10.29130/dubited.692558.
ISNAD Geliş, Kadir. “Şeffaf Bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi”. Duzce University Journal of Science and Technology 8/3 (July 2020), 1852-1863. https://doi.org/10.29130/dubited.692558.
JAMA Geliş K. Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi. DUBİTED. 2020;8:1852–1863.
MLA Geliş, Kadir. “Şeffaf Bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi”. Duzce University Journal of Science and Technology, vol. 8, no. 3, 2020, pp. 1852-63, doi:10.29130/dubited.692558.
Vancouver Geliş K. Şeffaf bir PEM Yakıt Hücresinin Performansının Değerlendirilmesi. DUBİTED. 2020;8(3):1852-63.