Research Article
BibTex RIS Cite

Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi

Year 2020, Volume: 8 Issue: 3, 2092 - 2109, 31.07.2020
https://doi.org/10.29130/dubited.716394

Abstract

Bu çalışmada mutfak davlumbazlarında kullanılan, motor ve filtrelerin ürün performans ve enerji tüketimi üzerine etkilerinin araştırılması amaçlanmıştır. Bu amaç için mutfaklarda kullanılan piramit tipi, iki farklı boyuta sahip davlumbaz seçilmiştir. Davlumbazların performansını optimize etmek için hem deneysel hem de istatiksel olarak incelenmesinde Taguchi L8 deneysel tasarım yönteminden yararlanılmıştır. Seçilen yöntem ile farklı boyutta (60–90 cm) ve farklı özelliklerde motor (450-650 m3/h) ve filtre (3-5 katman) konfigürasyonuna sahip davlumbazların üretimi gerçekleştirilmiştir. Deney sonuçları incelendiğinde, 60cm boyuta sahip davlumbazların yıllık enerji tüketimi (AEC) en düşük 43,6 kWh/a iken en yüksek 62,7 kWh/a olduğu ve 90cm boyuta sahip davlumbazların ise en düşük 48,7 kWh/a iken en yüksek 63,0 kWh/a olduğu görülmüştür. Filtrelerin yağ tutma verimliliği incelendiğinde en düşük yağ filtre verimliliği %68,4 olarak 90cm boyuta sahip davlumbazda ve en yüksek %80,6 olarak 60cm boyuta sahip davlumbazda olduğu görülmüştür. Deneysel sonuçların istatiksel olarak analizleri gerçekleştirilmiş ve Sinyal/Gürültü oranları, Anova ve Regresyon analizleri incelenmiştir. Sinyal/Gürültü oranları incelendiğinde en verimli noktadaki debi (QBEP), yıllık enerji tüketimi (AEC), maksimum devirde hava akışı, ses performansı (LWA) ve yağ filtresi verimliliği (GFE) için en ideal seviyeler sırası ile A2B2C2, A1B1C2, A2B2C2, A2B2C1 ve A1B2C1 olarak belirlenmiştir. Anova sonuçları incelendiğinde QBEP, AEC, maksimum devirde hava akışı ve LWA için en etkili parametrelerin sırası ile %96,62, %93.02, %98,87, %41,45 oran ile motor olarak belirlendiği, yağ filtresi verimliliği için en etkili parametrenin ise %62,72 oranla filtre katmanı olarak tespit edilmiştir.

Thanks

Bu çalışmada hiçbir yardımı esirgemeyen Silverline Endüsrtri A.Ş.’ye ve çalışanlarına, ayrıca desteklerinden dolayı Ar-GE direktörü Semra ARSLAN’a teşekkür ederiz.

References

  • [1] M. Liddament, "A Guide to Energy Efficient Ventilation, Air Infiltration and Ventilation Centre," Sint-Stevens-Woluwe. Belgium, 85, 9, 1996.
  • [2] P. Concannon, "Technical Note AIVC 57: Residential Ventilation," Brussels, Air Infiltration and Ventilation Center, 2002.
  • [3] P. G. Schild, "State-of-the-art of low-energy residential ventilation," Contributed Report 7 (2007).
  • [4] B. Lundbäck, "Epidemiology of rhinitis and asthma," Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, vol. 28, pp. 3-10, 1998.
  • [5] J. Heinrich, "Influence of indoor factors in dwellings on the development of childhood asthma," International journal of hygiene and environmental health, vol. 214.1, pp. 1-25, 2011.
  • [6] P. Jacobs, E. Cornelissen, and W. Borsboom, "Energy efficient measures to reduce PM2, 5 emissions due to cooking," Indoor Air conference, TNO, Delft, Netherlands, 2016.
  • [7] P. Cicconi, D. Landi, M. Germani and A.C. Russo, "A support approach for the conceptual design of energy-efficient cooker hoods," Applied Energy, vol. 206, pp. 222-239, 2017.
  • [8] K. Gillingham, R.G. Newell and K. Palmer, "Energy efficiency economics and policy," Annual Review of Resource Economics, vol. 1, pp. 597-620, 2009.
  • [9] Z. Wang, X. Wang, and D. Guo, "Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work?," Energy Policy, vol. 102, pp. 430-439, 2017.
  • [10] P. Cicconi, M. Germani, D. Landi and A.C. Russo "A design methodology to predict the product energy efficiency through a configuration tool," Advances on Mechanics, Design Engineering and Manufacturing, Springer, Cham, pp. 1095-1105, 2017.
  • [11] N. Fujimura, H. Kotani, T. Yamanaka, Y. Momoi, K. Sagara & K. Masui, “C&C efficiency of canopy hood exposed to horizontal air stream in commercial kitchen calculated by CFD analysis,” International Journal of Ventilation, vol. 16, no. 3, pp. 213-229, 2017.
  • [12] H. Kotani, T. Yamanaka, K. Sagara & S. Chihara, “High efficiency exhaust hood with baffle plate for commercial kitchen,” In 9th International Conference on Industrial Ventilation, Japan, 2009.
  • [13] Y. Zhao, A. Li, P. Tao & R. Gao, “The impact of various hood shapes, and side panel and exhaust duct arrangements, on the performance of typical Chinese style cooking hoods,” In Building Simulation, vol. 6, pp. 139-149, 2013.
  • [14] Gynther, Lea, Irmeli Mikkonen, and Antoinet Smits. "Evaluation of European energy behavioural change programmes." Energy Efficiency, vol. 5, pp. 67-82, 2012.
  • [15] Directive 2010/30/EU of the European parliament and of the council of 19 May 2010 on the indication by labelling and standard product information of the consumption of energy and other resources by energy-related products.
  • [16] Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products.
  • [17] The International Electrotechnical Commission (IEC), “Household range hoods - Methods for measuring performance”, IEC 61591, 2005.
  • [18] The International Electrotechnical Commission (IEC), “Household and similar electrical appliances - Test code for the determination of airborne noise - Part 1: General requirements”, IEC 60704-1, 2010.
  • [19] M. Pinelli, A. Suman, “A numerical method for the efficient design of free opening hoods in industrial and domestic applications,” Energy, vol. 74, pp. 484–493, 2014.
  • [20] M.M. Lunden, W.W. Delp, B.C. Singer, “Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods,” Indoor Air, vol. 25, pp. 45-58, 2015.
  • [21] E. Nas, B. Öztürk, “Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials,” Materials Testing, vol. 60(5), pp. 519-525, 2018.
  • [22] T. Kıvak, "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts," Measurement, vol. 50, pp. 19-28, 2014.
  • [23] K. Aslantaş, E. Ekici, A. Çiçek, “Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis,” Measurement, vol. 128, pp. 419-427, 2018.
  • [24] B. Özlü, M. Akgün, H. Demir, “AA6061 Alaşımının Tornalanmasında Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerine Etkisinin Analizi ve Optimizasyonu,“ Gazi Mühendislik Bilimleri Dergisi, vol. 5(2) pp. 151-158, 2019.
  • [25] P.J. Ross, “Taguchi Techniques for Quality Engineering,” Mc Graw-Hill, New York, USA, 1996.
  • [26] M.S. Phadke, “Quality Engineering Using Robust Design,” Printice Hall, Englewood Cliffs, NJ, 1989.
  • [27] H. Akkuş ve H. Yaka, “Optimization of Turning Process By Using Taguchi Method,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22(5), pp. 1444-1448, 2018.
  • [28] E. Nas and H. Gökkaya, "Experimental and statistical study on machinability of the composite materials with metal matrix Al/B4C/Graphite," Metallurgical and Materials Transactions A, vol. 48, pp. 5059-5067, 2017.
  • [29] A.P. Paiva, J.H.F. Gomes, R.S. Peruchi, R.C. Leme and P.P. Balestrassi, “A multivariate robust parameter optimization approach based on principal component analysis with combined arrays,” Comput Ind Eng, Elsevier, vol. 74, pp.186–198, 2014.
Year 2020, Volume: 8 Issue: 3, 2092 - 2109, 31.07.2020
https://doi.org/10.29130/dubited.716394

Abstract

References

  • [1] M. Liddament, "A Guide to Energy Efficient Ventilation, Air Infiltration and Ventilation Centre," Sint-Stevens-Woluwe. Belgium, 85, 9, 1996.
  • [2] P. Concannon, "Technical Note AIVC 57: Residential Ventilation," Brussels, Air Infiltration and Ventilation Center, 2002.
  • [3] P. G. Schild, "State-of-the-art of low-energy residential ventilation," Contributed Report 7 (2007).
  • [4] B. Lundbäck, "Epidemiology of rhinitis and asthma," Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, vol. 28, pp. 3-10, 1998.
  • [5] J. Heinrich, "Influence of indoor factors in dwellings on the development of childhood asthma," International journal of hygiene and environmental health, vol. 214.1, pp. 1-25, 2011.
  • [6] P. Jacobs, E. Cornelissen, and W. Borsboom, "Energy efficient measures to reduce PM2, 5 emissions due to cooking," Indoor Air conference, TNO, Delft, Netherlands, 2016.
  • [7] P. Cicconi, D. Landi, M. Germani and A.C. Russo, "A support approach for the conceptual design of energy-efficient cooker hoods," Applied Energy, vol. 206, pp. 222-239, 2017.
  • [8] K. Gillingham, R.G. Newell and K. Palmer, "Energy efficiency economics and policy," Annual Review of Resource Economics, vol. 1, pp. 597-620, 2009.
  • [9] Z. Wang, X. Wang, and D. Guo, "Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work?," Energy Policy, vol. 102, pp. 430-439, 2017.
  • [10] P. Cicconi, M. Germani, D. Landi and A.C. Russo "A design methodology to predict the product energy efficiency through a configuration tool," Advances on Mechanics, Design Engineering and Manufacturing, Springer, Cham, pp. 1095-1105, 2017.
  • [11] N. Fujimura, H. Kotani, T. Yamanaka, Y. Momoi, K. Sagara & K. Masui, “C&C efficiency of canopy hood exposed to horizontal air stream in commercial kitchen calculated by CFD analysis,” International Journal of Ventilation, vol. 16, no. 3, pp. 213-229, 2017.
  • [12] H. Kotani, T. Yamanaka, K. Sagara & S. Chihara, “High efficiency exhaust hood with baffle plate for commercial kitchen,” In 9th International Conference on Industrial Ventilation, Japan, 2009.
  • [13] Y. Zhao, A. Li, P. Tao & R. Gao, “The impact of various hood shapes, and side panel and exhaust duct arrangements, on the performance of typical Chinese style cooking hoods,” In Building Simulation, vol. 6, pp. 139-149, 2013.
  • [14] Gynther, Lea, Irmeli Mikkonen, and Antoinet Smits. "Evaluation of European energy behavioural change programmes." Energy Efficiency, vol. 5, pp. 67-82, 2012.
  • [15] Directive 2010/30/EU of the European parliament and of the council of 19 May 2010 on the indication by labelling and standard product information of the consumption of energy and other resources by energy-related products.
  • [16] Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products.
  • [17] The International Electrotechnical Commission (IEC), “Household range hoods - Methods for measuring performance”, IEC 61591, 2005.
  • [18] The International Electrotechnical Commission (IEC), “Household and similar electrical appliances - Test code for the determination of airborne noise - Part 1: General requirements”, IEC 60704-1, 2010.
  • [19] M. Pinelli, A. Suman, “A numerical method for the efficient design of free opening hoods in industrial and domestic applications,” Energy, vol. 74, pp. 484–493, 2014.
  • [20] M.M. Lunden, W.W. Delp, B.C. Singer, “Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods,” Indoor Air, vol. 25, pp. 45-58, 2015.
  • [21] E. Nas, B. Öztürk, “Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials,” Materials Testing, vol. 60(5), pp. 519-525, 2018.
  • [22] T. Kıvak, "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts," Measurement, vol. 50, pp. 19-28, 2014.
  • [23] K. Aslantaş, E. Ekici, A. Çiçek, “Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis,” Measurement, vol. 128, pp. 419-427, 2018.
  • [24] B. Özlü, M. Akgün, H. Demir, “AA6061 Alaşımının Tornalanmasında Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerine Etkisinin Analizi ve Optimizasyonu,“ Gazi Mühendislik Bilimleri Dergisi, vol. 5(2) pp. 151-158, 2019.
  • [25] P.J. Ross, “Taguchi Techniques for Quality Engineering,” Mc Graw-Hill, New York, USA, 1996.
  • [26] M.S. Phadke, “Quality Engineering Using Robust Design,” Printice Hall, Englewood Cliffs, NJ, 1989.
  • [27] H. Akkuş ve H. Yaka, “Optimization of Turning Process By Using Taguchi Method,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22(5), pp. 1444-1448, 2018.
  • [28] E. Nas and H. Gökkaya, "Experimental and statistical study on machinability of the composite materials with metal matrix Al/B4C/Graphite," Metallurgical and Materials Transactions A, vol. 48, pp. 5059-5067, 2017.
  • [29] A.P. Paiva, J.H.F. Gomes, R.S. Peruchi, R.C. Leme and P.P. Balestrassi, “A multivariate robust parameter optimization approach based on principal component analysis with combined arrays,” Comput Ind Eng, Elsevier, vol. 74, pp.186–198, 2014.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yusuf Özbakış 0000-0002-8439-411X

Engin Nas 0000-0002-4828-9240

Publication Date July 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Özbakış, Y., & Nas, E. (2020). Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(3), 2092-2109. https://doi.org/10.29130/dubited.716394
AMA Özbakış Y, Nas E. Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi. DUBİTED. July 2020;8(3):2092-2109. doi:10.29130/dubited.716394
Chicago Özbakış, Yusuf, and Engin Nas. “Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi Ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 3 (July 2020): 2092-2109. https://doi.org/10.29130/dubited.716394.
EndNote Özbakış Y, Nas E (July 1, 2020) Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 3 2092–2109.
IEEE Y. Özbakış and E. Nas, “Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi”, DUBİTED, vol. 8, no. 3, pp. 2092–2109, 2020, doi: 10.29130/dubited.716394.
ISNAD Özbakış, Yusuf - Nas, Engin. “Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi Ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/3 (July 2020), 2092-2109. https://doi.org/10.29130/dubited.716394.
JAMA Özbakış Y, Nas E. Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi. DUBİTED. 2020;8:2092–2109.
MLA Özbakış, Yusuf and Engin Nas. “Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi Ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 3, 2020, pp. 2092-09, doi:10.29130/dubited.716394.
Vancouver Özbakış Y, Nas E. Davlumbazlarda Kullanılan Komponent Özelliklerinin Enerji Tüketimi ve Çalışma Performansı Üzerine Etkisinin Deneysel-İstatiksel Olarak İncelenmesi. DUBİTED. 2020;8(3):2092-109.