Research Article
BibTex RIS Cite

Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells

Year 2021, Volume: 9 Issue: 1, 28 - 39, 31.01.2021
https://doi.org/10.29130/dubited.831732

Abstract

Due to unique properties of perovskite materials, the solar cells technologies based on those materials rapidly advance to the maximum theoretical conversion efficiency of about 32 %. This study reports the simulation results of CH3NH3PbI3-xCIx based perovskite solar cells using SCAPS-1D software. ZnO is used as common electron transfer medium (ETM), whereas Cu2O, CuI and CuO materials are separately used for hole transfer medium (HTM) each time. The cell basic parameters (Voc, Jsc, FF and efficiency) are simulated at various conditions. CuO is found to be the best HTM material, whereas the maximum efficiency of ̴26.8 % is obtained at 0.55 µm thickness of CH3NH3PbI3-xCIx material with a donor atom density of about 1017 cm-3.

Thanks

The authors are thankful to Prof. Marc Burgelman at the University of Gent for providing SCAPS-1D software.

References

  • [1] N. G. Park, “Perovskite solar cells: An emerging photovoltaic technology,” Materials Today, vol. 18, no. 2. pp. 65–72, 01-Mar-2015.
  • [2] S. D. Stranks et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341–344, Oct. 2013.
  • [3] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics, vol. 8, no. 7, pp. 506–514, 2014.
  • [4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, 2009.
  • [5] M. Jeong et al., “Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss,” Science, vol. 369, no. 6511, pp. 1615–1620, 2020.
  • [6] H. S. Kim et al., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep., vol. 2, no. 1, pp. 1–7, 2012.
  • [7] J. P. Correa-Baena et al., “Promises and challenges of perovskite solar cells,” Science, vol. 358, no. 6364, 2017.
  • [8] C. Zuo and L. Ding, “Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells,” Small, vol. 11, no. 41, pp. 5528–5532, 2015.
  • [9] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vol. 361, pp. 527–532, 2000.
  • [10] K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Lin, “Controllable design of solid-state perovskite solar cells by SCAPS device simulation,” Solid. State. Electron., vol. 126, pp. 75–80, 2016.
  • [11] G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, and E. L. Peltzer y Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations,” Superlattices Microstruct., vol. 107, pp. 136–143, 2017.
  • [12] L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide heterojunction solar cells,” Semicond. Sci. Technol., vol. 26, no. 8, 2011.
  • [13] M. Goudarzi and M. Banihashemi, “Simulation of an inverted perovskite solar cell with inorganic electron and hole transfer layers (Erratum),” J. Photonics Energy, vol. 7, no. 2, pp. 029901, 2017.
  • [14] T. Minemoto and M. Murata, “Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation,” Curr. Appl. Phys., vol. 14, no. 11, pp. 1428–1433, 2014.
  • [15] S. J. Fonash, “Material Properties and Device Physics Basic to Photovoltaics,” in Solar Cell Device Physics, Elsevier, 2010, pp. 9–65.
  • [16] Z. El Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou, and J. C. Bernède, “Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 429–435, 2015.
  • [17] F. Liu et al., “Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells,” Appl. Phys. Lett., vol. 104, no. 25, 2014.
  • [18] T. M. Koh et al., “Formamidinium tin-based perovskite with low Eg for photovoltaic applications,” J. Mater. Chem. A, vol. 3, no. 29, pp. 14996–15000, 2015.
  • [19] C. M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, “Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces,” Adv. Mater., vol. 31, no. 52, 2019.
  • [20] M. Kumar, A. Raj, A. Kumar, and A. Anshul, “An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation,” Opt. Mater. (Amst)., vol. 108, pp. 110213, 2020.
  • [21] S. O. Kasap, Optoelectronics & Photonics:Principles & Practices: International Edition, 2nd ed. Pearson Education Limited, 2013, ch. 5, pp. 437
  • [22] D. A. Neamen, Semiconductor Physics And Devices: Basic Principles, 4th ed. McGraw-Hill, 2012.
  • [23] W. Isoe, M. Mageto, C. Maghanga, M. Mwamburi, V. Odari, and C. Awino, “Thickness Dependence of Window Layer on CH3NH3PbI3-XClXPerovskite Solar Cell,” Int. J. Photoenergy, vol. 2020, 2020.

CH3NH3PbI3-xCIx Bazlı Perovskite Güneş Hücrelerinin Sayısal Analizi ve Optimizasyonu

Year 2021, Volume: 9 Issue: 1, 28 - 39, 31.01.2021
https://doi.org/10.29130/dubited.831732

Abstract

Perovskite malzemelerinin benzersiz özelliklerinden dolayı, söz konusu malzemelerden üretilen güneş pili teknolojilerinin verimliliği, maksimum teorik noktası olan % 32’ye doğru hızla ilerlerlemektedir. Bu çalışmada, SCAPS-1D yazılımını kullanılarak CH3NH3PbI3-xCIx bazlı perovskite güneş pilli tasarlanıp, parametreleri simüle edildi. ZnO, ortak elektron transfer katmanı (ETM) olarak kullanılırken, hol transfer katmanı (HTM) için Cu2O, CuI ve CuO malzemeleri her seferinde ayrı ayrı kullanıldı. Hücre temel parametreleri (Voc, Jsc, FF ve verimlilik) farklı koşullarda simüle edildi. CuO en iyi HTM malzemesi olarak gözlemlenirken, yaklaşık 1017 cm-3 verici atom yoğunluğunda ve 0.55 µm kalınlığındaki CH3NH3PbI3-xCIx materyalinde maksimum % 26.8 verimlilik elde edildi.

References

  • [1] N. G. Park, “Perovskite solar cells: An emerging photovoltaic technology,” Materials Today, vol. 18, no. 2. pp. 65–72, 01-Mar-2015.
  • [2] S. D. Stranks et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341–344, Oct. 2013.
  • [3] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics, vol. 8, no. 7, pp. 506–514, 2014.
  • [4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, 2009.
  • [5] M. Jeong et al., “Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss,” Science, vol. 369, no. 6511, pp. 1615–1620, 2020.
  • [6] H. S. Kim et al., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep., vol. 2, no. 1, pp. 1–7, 2012.
  • [7] J. P. Correa-Baena et al., “Promises and challenges of perovskite solar cells,” Science, vol. 358, no. 6364, 2017.
  • [8] C. Zuo and L. Ding, “Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells,” Small, vol. 11, no. 41, pp. 5528–5532, 2015.
  • [9] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vol. 361, pp. 527–532, 2000.
  • [10] K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Lin, “Controllable design of solid-state perovskite solar cells by SCAPS device simulation,” Solid. State. Electron., vol. 126, pp. 75–80, 2016.
  • [11] G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, and E. L. Peltzer y Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations,” Superlattices Microstruct., vol. 107, pp. 136–143, 2017.
  • [12] L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide heterojunction solar cells,” Semicond. Sci. Technol., vol. 26, no. 8, 2011.
  • [13] M. Goudarzi and M. Banihashemi, “Simulation of an inverted perovskite solar cell with inorganic electron and hole transfer layers (Erratum),” J. Photonics Energy, vol. 7, no. 2, pp. 029901, 2017.
  • [14] T. Minemoto and M. Murata, “Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation,” Curr. Appl. Phys., vol. 14, no. 11, pp. 1428–1433, 2014.
  • [15] S. J. Fonash, “Material Properties and Device Physics Basic to Photovoltaics,” in Solar Cell Device Physics, Elsevier, 2010, pp. 9–65.
  • [16] Z. El Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou, and J. C. Bernède, “Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 429–435, 2015.
  • [17] F. Liu et al., “Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells,” Appl. Phys. Lett., vol. 104, no. 25, 2014.
  • [18] T. M. Koh et al., “Formamidinium tin-based perovskite with low Eg for photovoltaic applications,” J. Mater. Chem. A, vol. 3, no. 29, pp. 14996–15000, 2015.
  • [19] C. M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, “Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces,” Adv. Mater., vol. 31, no. 52, 2019.
  • [20] M. Kumar, A. Raj, A. Kumar, and A. Anshul, “An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation,” Opt. Mater. (Amst)., vol. 108, pp. 110213, 2020.
  • [21] S. O. Kasap, Optoelectronics & Photonics:Principles & Practices: International Edition, 2nd ed. Pearson Education Limited, 2013, ch. 5, pp. 437
  • [22] D. A. Neamen, Semiconductor Physics And Devices: Basic Principles, 4th ed. McGraw-Hill, 2012.
  • [23] W. Isoe, M. Mageto, C. Maghanga, M. Mwamburi, V. Odari, and C. Awino, “Thickness Dependence of Window Layer on CH3NH3PbI3-XClXPerovskite Solar Cell,” Int. J. Photoenergy, vol. 2020, 2020.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Musa Çadırcı 0000-0002-5188-4593

Veli Oğuz This is me 0000-0001-9909-1798

Serhat Ertan This is me 0000-0002-5832-6033

Publication Date January 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Çadırcı, M., Oğuz, V., & Ertan, S. (2021). Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells. Duzce University Journal of Science and Technology, 9(1), 28-39. https://doi.org/10.29130/dubited.831732
AMA Çadırcı M, Oğuz V, Ertan S. Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells. DUBİTED. January 2021;9(1):28-39. doi:10.29130/dubited.831732
Chicago Çadırcı, Musa, Veli Oğuz, and Serhat Ertan. “Numerical Analysis and Optimization of CH3NH3PbI3-XCIx Based Perovskite Solar Cells”. Duzce University Journal of Science and Technology 9, no. 1 (January 2021): 28-39. https://doi.org/10.29130/dubited.831732.
EndNote Çadırcı M, Oğuz V, Ertan S (January 1, 2021) Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells. Duzce University Journal of Science and Technology 9 1 28–39.
IEEE M. Çadırcı, V. Oğuz, and S. Ertan, “Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells”, DUBİTED, vol. 9, no. 1, pp. 28–39, 2021, doi: 10.29130/dubited.831732.
ISNAD Çadırcı, Musa et al. “Numerical Analysis and Optimization of CH3NH3PbI3-XCIx Based Perovskite Solar Cells”. Duzce University Journal of Science and Technology 9/1 (January 2021), 28-39. https://doi.org/10.29130/dubited.831732.
JAMA Çadırcı M, Oğuz V, Ertan S. Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells. DUBİTED. 2021;9:28–39.
MLA Çadırcı, Musa et al. “Numerical Analysis and Optimization of CH3NH3PbI3-XCIx Based Perovskite Solar Cells”. Duzce University Journal of Science and Technology, vol. 9, no. 1, 2021, pp. 28-39, doi:10.29130/dubited.831732.
Vancouver Çadırcı M, Oğuz V, Ertan S. Numerical Analysis and Optimization of CH3NH3PbI3-xCIx Based Perovskite Solar Cells. DUBİTED. 2021;9(1):28-39.