Otonom Araçların Teknolojik Gelişim Süreci ve Trafik Seyir Özelliklerinin İncelenmesi
Year 2021,
Volume: 9 Issue: 4, 1374 - 1381, 31.07.2021
Mustafa Karasahin
,
Mehmet Çağrı Kızıltaş
Abstract
Otonom araçlar gelecek ulaştırması ve kentinin en önemli unsurlarından bir tanesini teşkil etmektedir. İçinde bulunduğumuz yüzyılda kentleşme, sürdürülebilirlik ve dijitalleşme en temel unsurlar olacaktır. Bunun merkezinde ise otonom araçlar etkin ve belirleyici bir konuma sahiptir. Otonom araçların trafikte ağırlığı arttıkça ulaştırma ve kentleşme de yeniden şekillenecektir. Bu çalışma kapsamında, öncelikle otonom araç özelliklerinin kent ve ulaşımla ilişkisi ortaya konulmuştur. Ardından ise otonom araçların gelişim süreci detaylı olarak ele alınmıştır. Akabinde otonom araçlarda güvenlik ve emniyet konusu değerlendirilmiş bu olup sonrasında otonom araç teknolojileri çok yönlü olarak paylaşılmıştır. Son olarak da bu kapsamda sonuçlar verilmiştir.
Thanks
Bütün hocalarımıza teşekkür ederim
References
- [1] K. Lindemann, "BCS (Bundesverband CarSharing): Datenblatt CarSharing in Deutschland", Hochschule, vol. 5, pp. 3, 2014.
- [2] K. Breindl, "CarSharing ist auch in kleinen Städten möglich. In: Bundesverband CarSharing e.V. (eds.): Eine Idee setzt sich durCh. 25 Jahre CarSharing. Brühl (kölner stadt- und verkehrsverlag) ", Mobility Tech Green, vol. 4, pp. 67-76, 2014.
- [3] J. Anderson, "Autonomous Vehicle Technology", RAND, vol.3, pp. 8. 2007
- [4] J. Schmidhuber, "Highlights of Robot Car History", WPI, vol. 3, pp. 40-44. 2005
- [5] A. Davila, E. Aramburu and A. Freixas, "Making the best out of aerodynamics: Platoons. In: SAE Technical Paper. ", SAE International, vol. 3, pp. 1–6. Apr 2013.
- [6] J. Golson "Tesla’s autopilot system is reportedly getting more sensors. Google self-driving car project", IEEE, vol.7, pp. 315-329. 2017.
- [7] S. Guler, M. Menendez and L. Meier, "Using connected vehicle technology to improve the efficiency of intersections". Transp. Res., vol. 3, pp. 121–131, 2017.
- [8] Öko-Institut; Institut für sozialökologische Forschung "SHARE – Forschung zum neuen Carsharing. Wissenschaftliche Begleitforschung zu Car2Go", Halbzeit, vol. 3, pp. 1-3, 2014.
- [9] Z. Fei, S. Miremadi, K. Akesson and B. Lennartson, “Efficient symbolic supervisor synthesis for extended finite automata,” IEEE Transactions on Control Systems Technology, vol. 4, pp. 2368–2375, 2014.
- [10] N. Kalra and M. Paddock. "Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? ", RAND, vol. 4, pp.8, 2016.
- [11] J. Cui and G. Sabaliauskaite "On the alignment of safety and security for autonomous vehicles", IARIA, vol. 4, pp. 59-64. 2017.
- [12] H. Hasrouny, E. Samhat, C. Bassil and A. Laouiti, "Vanet security challenges and solutions: a survey, Veh. Commun". IEEE Intell. Transp. Syst., vol. 18, no.3, pp. 516–526, 2017.
- [13] A. Vaibhav, D. Shukla, S. Das, S. Sahana and P. Johri, “Security challenges, authentication, application and trust models for vehicular Ad Hoc network-a survey,” MDPI, vol. 5, pp. 9131-9138, 2017
- [14] Society of Automotive Engineers (SAE), “SAE-J3016: Taxonomy and definitions for terms related to driving automation systems for on-Road motor vehicles“ SAE, vol. 28, pp. 4, 2016.
- [15] P. Bhavsar, P. Das, M. Paugh, K. Dey and M. Chowdhury, “Risk analysis of autonomous vehicles in mixed traffic streams,” Transportation Research Record, vol. 2625, no.1, pp. 51–61,2017
- [16] M. Zhu, H. Chen and G. Xiong “A model predictive speed tracking control approach for autonomous ground vehicles”, Mechanical Systems and Signal Processing, vol. 4, pp. 138-152, 2017.
- [17] J. Donga, S. Chenb, Y. Lia, R. Dua, A. Steinfeldc and S. Labia, “Facilitating connected autonomous vehicle operations using space-weighted information fusion and deep reinforcement learning based control“ SAE, vol. 28, pp. 23–25, 2020.
- [18] D. Hess, “Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States“, Technological Forecasting and Social Change, vol. 151, pp. 8. 2020.
- [19] I. Ashraf, S. Hur and Y. Park, “An Investigation of Interpolation Techniques to Generate 2D Intensity Image From LIDAR Data”, IEEE, vol. 99, pp. 1, 2017.
- [20] T. Litman, “Autonomous Vehicle Implementation Predictions Implications for Transport Planning“, Victoria Transport Policy Institute, vol. 1, pp. 1-46, 2021.
- [21] Z. Cui, S. Yang and H. Tsai, “A vision-based hierarchical framework for autonomous front-vehicle taillights detection and signal recognition,”, IEEE, vol. 7, pp. 931–937, 2015.
- [22] M. Daraei, A. Vu and R. Manduchi, “Velocity and Shape from Tightly-Coupled LiDAR and Camera,” IEEE, vol. 4, pp. 60-67, 2017
- [23] D. Silva, D. Földes and C. Csiszár, “Autonomous Vehicle Use and Urban Space Transformation: A Scenario Building and Analysing Method“, Transportation Research, vol. 4, pp. 1-22, 2021.
- [24] X. Lin, F. Wang, B. Yang and W. Zhang, “Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in GNSS-Challenged Environments’’, MDPI, vol. 21, pp. 3703, 2021.
Review of Autonomous Vehicle’s Improvement Period and On This Context Traffic Navigation Features
Year 2021,
Volume: 9 Issue: 4, 1374 - 1381, 31.07.2021
Mustafa Karasahin
,
Mehmet Çağrı Kızıltaş
Abstract
Autonomous vehicle is one of the most important element of future transport. Urbanization, sustainability and digitalization are going to be the most basic parameters in this century. At the central point of this, autonomous vehicle has an effective and determinant position. As traffic penetration of autonomous vehicle increases, transportation and urbanization are going to reshape. In this paper, firstly interaction between urbanization and transportation with autonomous vehicles is discussed. Then improvement period of autonomous vehicles is evaluated in detail. After these, safety and security issues of autonomous vehicles are discussed. Later on autonomous vehicle technologies are shared with multi directionally. Lastly conclusions are given.
References
- [1] K. Lindemann, "BCS (Bundesverband CarSharing): Datenblatt CarSharing in Deutschland", Hochschule, vol. 5, pp. 3, 2014.
- [2] K. Breindl, "CarSharing ist auch in kleinen Städten möglich. In: Bundesverband CarSharing e.V. (eds.): Eine Idee setzt sich durCh. 25 Jahre CarSharing. Brühl (kölner stadt- und verkehrsverlag) ", Mobility Tech Green, vol. 4, pp. 67-76, 2014.
- [3] J. Anderson, "Autonomous Vehicle Technology", RAND, vol.3, pp. 8. 2007
- [4] J. Schmidhuber, "Highlights of Robot Car History", WPI, vol. 3, pp. 40-44. 2005
- [5] A. Davila, E. Aramburu and A. Freixas, "Making the best out of aerodynamics: Platoons. In: SAE Technical Paper. ", SAE International, vol. 3, pp. 1–6. Apr 2013.
- [6] J. Golson "Tesla’s autopilot system is reportedly getting more sensors. Google self-driving car project", IEEE, vol.7, pp. 315-329. 2017.
- [7] S. Guler, M. Menendez and L. Meier, "Using connected vehicle technology to improve the efficiency of intersections". Transp. Res., vol. 3, pp. 121–131, 2017.
- [8] Öko-Institut; Institut für sozialökologische Forschung "SHARE – Forschung zum neuen Carsharing. Wissenschaftliche Begleitforschung zu Car2Go", Halbzeit, vol. 3, pp. 1-3, 2014.
- [9] Z. Fei, S. Miremadi, K. Akesson and B. Lennartson, “Efficient symbolic supervisor synthesis for extended finite automata,” IEEE Transactions on Control Systems Technology, vol. 4, pp. 2368–2375, 2014.
- [10] N. Kalra and M. Paddock. "Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? ", RAND, vol. 4, pp.8, 2016.
- [11] J. Cui and G. Sabaliauskaite "On the alignment of safety and security for autonomous vehicles", IARIA, vol. 4, pp. 59-64. 2017.
- [12] H. Hasrouny, E. Samhat, C. Bassil and A. Laouiti, "Vanet security challenges and solutions: a survey, Veh. Commun". IEEE Intell. Transp. Syst., vol. 18, no.3, pp. 516–526, 2017.
- [13] A. Vaibhav, D. Shukla, S. Das, S. Sahana and P. Johri, “Security challenges, authentication, application and trust models for vehicular Ad Hoc network-a survey,” MDPI, vol. 5, pp. 9131-9138, 2017
- [14] Society of Automotive Engineers (SAE), “SAE-J3016: Taxonomy and definitions for terms related to driving automation systems for on-Road motor vehicles“ SAE, vol. 28, pp. 4, 2016.
- [15] P. Bhavsar, P. Das, M. Paugh, K. Dey and M. Chowdhury, “Risk analysis of autonomous vehicles in mixed traffic streams,” Transportation Research Record, vol. 2625, no.1, pp. 51–61,2017
- [16] M. Zhu, H. Chen and G. Xiong “A model predictive speed tracking control approach for autonomous ground vehicles”, Mechanical Systems and Signal Processing, vol. 4, pp. 138-152, 2017.
- [17] J. Donga, S. Chenb, Y. Lia, R. Dua, A. Steinfeldc and S. Labia, “Facilitating connected autonomous vehicle operations using space-weighted information fusion and deep reinforcement learning based control“ SAE, vol. 28, pp. 23–25, 2020.
- [18] D. Hess, “Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States“, Technological Forecasting and Social Change, vol. 151, pp. 8. 2020.
- [19] I. Ashraf, S. Hur and Y. Park, “An Investigation of Interpolation Techniques to Generate 2D Intensity Image From LIDAR Data”, IEEE, vol. 99, pp. 1, 2017.
- [20] T. Litman, “Autonomous Vehicle Implementation Predictions Implications for Transport Planning“, Victoria Transport Policy Institute, vol. 1, pp. 1-46, 2021.
- [21] Z. Cui, S. Yang and H. Tsai, “A vision-based hierarchical framework for autonomous front-vehicle taillights detection and signal recognition,”, IEEE, vol. 7, pp. 931–937, 2015.
- [22] M. Daraei, A. Vu and R. Manduchi, “Velocity and Shape from Tightly-Coupled LiDAR and Camera,” IEEE, vol. 4, pp. 60-67, 2017
- [23] D. Silva, D. Földes and C. Csiszár, “Autonomous Vehicle Use and Urban Space Transformation: A Scenario Building and Analysing Method“, Transportation Research, vol. 4, pp. 1-22, 2021.
- [24] X. Lin, F. Wang, B. Yang and W. Zhang, “Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in GNSS-Challenged Environments’’, MDPI, vol. 21, pp. 3703, 2021.