Research Article
BibTex RIS Cite

Numerical Modeling of Dam Break on Dry Bed

Year 2021, Volume: 9 Issue: 5, 1875 - 1890, 31.10.2021
https://doi.org/10.29130/dubited.897718

Abstract

In case of a dam break, it is important to analyze the break of the dam with numerical modeling techniques to minimize the loss of property and life in the downstream region of the dam and to take the necessary precautions during the planning of the dam. In addition, the impact of the propagation wave of existing dams on the downstream region with different scenarios can be analyzed using these methods. In this study, the numerical modeling of the dam break in the absence of any structure or flow (dry bed) on downstream of the dam is made with the ANSYS-Fluent package program using the finite volume method. In numerical modeling, Re-normalization Group k-ɛ (RNG), Shear Stress Transport (SST) and Detached Eddy Simulation (DES) models are used to solve the basic equations governing the dam break propagation wave flow. Volume of Fluid method (VOF) is used to determine of the water-air cross-section. Comparing the experimental and numerical water surface profiles obtained at different times, it was determined that the DES model is relatively more successful than the other models used. As a result of the study, it is seen that numerical models can be used safely in determining the safety measures and risk limits of the downstream region in case of a dam break.

References

  • [1] M. S. Kirkgoz, M. S. Akoz ve A. A. Oner, “Numerical modeling of flow over a chute spillway,”Journal of Hydraulic Research, vol. 47, no. 6, pp. 790-797, 2009.
  • [2] H. Ozmen-Cagatay ve S. Kocaman, “Dam-break flow in the presence of obstacle: experiment and CFD simulation,”Engineering Applications of Computational Fluid Mechanics, vol. 5, no. 4, pp. 541-552, 2011.
  • [3] A. A. Oner, M. S. Akoz, M. S. Kirkgoz ve V. Gumus, “Experimental validation of volume of fluid method for a sluice gate flow,” Advances in Mechanical Engineering, vol. 4, pp. 1-10, 2012.
  • [4] S. Kocaman, “Prediction of backwater profiles due to bridges in a compound channel using CFD,” Advances in Mechanical Engineering, c. 6, ss. 1-9, 2014.
  • [5] V. Gumus, O. Simsek, N. G. Soydan, M. S. Akoz ve M. S. Kirkgoz, “Numerical modeling of submerged hydraulic jump from a sluice gate,” Journal of Irrigation and Drainage Engineering, c. 142, s. 1, ss. 1-11, 2016.
  • [6] O. Simsek, M. S. Akoz ve N. G. Soydan, “Numerical validation of open channel flow over a curvilinear broad-crested weir,” Progress in Computational Fluid Dynamics, an International Journal, c. 16, s. 6, ss. 364-378, 2016.
  • [7] T. Shigematsu, P. Liu ve K. Oda, “Numerical modeling of the initial stages of dam-break waves,” Journal of Hydraulic Research, vol. 142, pp. 183–195, 2004.
  • [8] S. Kocaman, “Experimental and theoretical investigation of dam-break problem,” Doktora tezi, İnşaat Mühendisliği, Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, Adana, Türkiye, 2007.
  • [9] A. Khoshkonesh, B. Nsom, S. Gohari ve H. Banejad, “A comprehensive study on dam-break flow over dry and wet beds,” Ocean Engineering, vol. 188, pp. 1-18, 2019.
  • [10] D. H. Munoz ve G. Constantinescu, “3-D dam break flow simulations in simplified and complex domains,” Advances in Water Resources, vol. 137, pp. 1-16, 2020.
  • [11] W. Liu, B. Wang, Y. Guo, J. Zhang ve Y. Chen, “Experimental investigation on the effects of bed slope and tailwater on dam-break flows,” Journal of Hydrology, vol. 590, pp. 1-16, 2020.
  • [12] Y. Ye, T. Xu ve D. Z. Zhu, “Numerical analysis of dam-break waves propagating over dry and wet beds by the mesh-free method,” Ocean Engineering, vol. 217, pp. 1-11, 2020.
  • [13] S. Kocaman, H. Güzel, S. Evangelista, H. Ozmen-Cagatay ve G. Viccione, “Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel,” Water, vol. 12, no. 4, pp. 1-22, 2020.
  • [14] L. Peng, T. Zhang, Y. Rong, C. Hu ve P. Feng, “Numerical investigation of the impact of a dam-break induced flood on a structure,” Ocean Engineering, c. 223, ss. 1-15, 108669, 2021.
  • [15] G. Lauber ve W. H. Hager, “Experiments to Dambreak Wave: Sloping Channel,” Journal of Hydraulic Research, vol. 36, no. 5, pp.761-773, 1998.
  • [16] V. Yakhot ve S. A. Orszag, “Renormalizatıon group analysis of turbulence. I. Basic Theory”, Journal of Scientific Computing, vol. 1, no.1, pp. 3-51, 1986.
  • [17] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski ve C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids a-Fluid Dynamics, vol. 4, no. 7, pp. 1510-1520, 1992.
  • [18] F. R. Menter, “2-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994.
  • [19] ANSYS, Fluent Theory Guide, ANSYS Inc. USA, 2018.
  • [20] M. S. Aköz, N. G. Soydan, ve O. Şimşek, “Kritik üstü açik kanal akiminin detached eddy ve large eddy simülasyon ile sayısal modellenmesi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, c. 4, s. 4, ss. 213-224, 2016.
  • [21] T. Avudaiappan, V. Vijayan, S. S. Pandiyan, M. Saravanan ve S. Dinesh, “Potential flow simulation through lagrangian interpolation meshless method coding,” Journal of Applied Fluid Mechanics, vol.11, pp. 129-134, 2018.
  • [22] N. G. Soydan, O. Şimşek ve M. S. Aköz, “Prediction and validation of turbulent flow around a cylindrical weir,” European Water, vol. 57, pp. 85-92, 2017.
  • [23] R. Dutta ve T. Xing, “Quantitative solution verification of large eddy simulation of channel flow,” In Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer, Las Vegas, 2017, April.
  • [24] M. S. Kirkgoz, M. S. Akoz ve A. A. Oner, “Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested weirs,” Canadian Journal of Civil Engineering, vol.35 no. 9, pp. 975-986, 2008.
  • [25] O. Şimşek, N. G. Soydan, V. Gümüş, M. S., Aköz ve M. S. Kırkgöz, “Numerical modeling of B-Type hydraulic jump at an abrupt drop,” Teknik Dergi, vol. 26, no. 4, pp. 7215-7240, 2015.
  • [26] P. J. Roache, “Perspective: a method for uniform reporting of grid refinement studies,” Journal of Fluids Engineering -Transactions of the ASME, c. 116, s. 3, ss. 405-413, 1994.
  • [27] L. Eça ve M. Hoekstra, “A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies,” Journal of Computational Physics, vol. 262, pp. 104-130, 2014.
  • [28] A. Mansour ve E. Laurien, “Numerical error analysis for three-dimensional CFD simulations in the two-room model containment THAI+: Grid convergence index, wall treatment error and scalability tests,” Nuclear Engineering and Design, vol. 326, pp. 220-233, 2018.

Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi

Year 2021, Volume: 9 Issue: 5, 1875 - 1890, 31.10.2021
https://doi.org/10.29130/dubited.897718

Abstract

Baraj yıkılmasının meydana gelmesi durumunda özellikle barajın mansap bölgesinde oluşacak mal ve can kaybının en aza indirgenmesi ve barajın planlama aşamasında gerekli önlemlerin alınması için, baraj yıkılmasının sayısal modelleme teknikleriyle analiz edilmesi önemlidir. Ayrıca, mevcut barajların yayılım dalgasının mansap bölgesine olan etkisinin farklı senaryolarla analizi de bu yöntemler kullanılarak gerçekleştirilebilmektedir. Bu çalışmada, baraj mansabında herhangi bir yapı veya akım bulunmaması durumunda (kuru yatak) gerçekleşen baraj yıkılmasının sayısal modellemesi, sonlu hacimler yöntemiyle ANSYS- Fluent paket programı kullanılarak yapılmıştır. Sayısal modellemelerde baraj yıkılması yayılım dalgası akımını idare eden temel denklemlerin çözümünde, Re-normalization Grup k-ɛ (RNG), Kayma Gerilmesi Taşınım (Shear Stress Transport -SST) ve Ayrılmış Girdap Benzetim (Detached Eddy Simulation- DES) modelleri, su hava ara kesitinin belirlenmesinde ise akışkan hacimleri yöntemi (Volume of Fluid-VOF) kullanılmıştır. Farklı zamanlarda elde edilen deneysel ve sayısal su yüzü profillerinin karşılaştırılmasından, DES modelinin kullanılan diğer modellere kıyasla nispeten daha başarılı olduğu belirlenmiştir. Çalışma sonucunda, baraj yıkılması durumunda barajların mansap bölgesinin güvenlik önlemlerinin ve risk sınırlarının belirlenmesinde, sayısal modellemelerin güvenle kullanılabileceği görülmüştür.

References

  • [1] M. S. Kirkgoz, M. S. Akoz ve A. A. Oner, “Numerical modeling of flow over a chute spillway,”Journal of Hydraulic Research, vol. 47, no. 6, pp. 790-797, 2009.
  • [2] H. Ozmen-Cagatay ve S. Kocaman, “Dam-break flow in the presence of obstacle: experiment and CFD simulation,”Engineering Applications of Computational Fluid Mechanics, vol. 5, no. 4, pp. 541-552, 2011.
  • [3] A. A. Oner, M. S. Akoz, M. S. Kirkgoz ve V. Gumus, “Experimental validation of volume of fluid method for a sluice gate flow,” Advances in Mechanical Engineering, vol. 4, pp. 1-10, 2012.
  • [4] S. Kocaman, “Prediction of backwater profiles due to bridges in a compound channel using CFD,” Advances in Mechanical Engineering, c. 6, ss. 1-9, 2014.
  • [5] V. Gumus, O. Simsek, N. G. Soydan, M. S. Akoz ve M. S. Kirkgoz, “Numerical modeling of submerged hydraulic jump from a sluice gate,” Journal of Irrigation and Drainage Engineering, c. 142, s. 1, ss. 1-11, 2016.
  • [6] O. Simsek, M. S. Akoz ve N. G. Soydan, “Numerical validation of open channel flow over a curvilinear broad-crested weir,” Progress in Computational Fluid Dynamics, an International Journal, c. 16, s. 6, ss. 364-378, 2016.
  • [7] T. Shigematsu, P. Liu ve K. Oda, “Numerical modeling of the initial stages of dam-break waves,” Journal of Hydraulic Research, vol. 142, pp. 183–195, 2004.
  • [8] S. Kocaman, “Experimental and theoretical investigation of dam-break problem,” Doktora tezi, İnşaat Mühendisliği, Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, Adana, Türkiye, 2007.
  • [9] A. Khoshkonesh, B. Nsom, S. Gohari ve H. Banejad, “A comprehensive study on dam-break flow over dry and wet beds,” Ocean Engineering, vol. 188, pp. 1-18, 2019.
  • [10] D. H. Munoz ve G. Constantinescu, “3-D dam break flow simulations in simplified and complex domains,” Advances in Water Resources, vol. 137, pp. 1-16, 2020.
  • [11] W. Liu, B. Wang, Y. Guo, J. Zhang ve Y. Chen, “Experimental investigation on the effects of bed slope and tailwater on dam-break flows,” Journal of Hydrology, vol. 590, pp. 1-16, 2020.
  • [12] Y. Ye, T. Xu ve D. Z. Zhu, “Numerical analysis of dam-break waves propagating over dry and wet beds by the mesh-free method,” Ocean Engineering, vol. 217, pp. 1-11, 2020.
  • [13] S. Kocaman, H. Güzel, S. Evangelista, H. Ozmen-Cagatay ve G. Viccione, “Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel,” Water, vol. 12, no. 4, pp. 1-22, 2020.
  • [14] L. Peng, T. Zhang, Y. Rong, C. Hu ve P. Feng, “Numerical investigation of the impact of a dam-break induced flood on a structure,” Ocean Engineering, c. 223, ss. 1-15, 108669, 2021.
  • [15] G. Lauber ve W. H. Hager, “Experiments to Dambreak Wave: Sloping Channel,” Journal of Hydraulic Research, vol. 36, no. 5, pp.761-773, 1998.
  • [16] V. Yakhot ve S. A. Orszag, “Renormalizatıon group analysis of turbulence. I. Basic Theory”, Journal of Scientific Computing, vol. 1, no.1, pp. 3-51, 1986.
  • [17] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski ve C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids a-Fluid Dynamics, vol. 4, no. 7, pp. 1510-1520, 1992.
  • [18] F. R. Menter, “2-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994.
  • [19] ANSYS, Fluent Theory Guide, ANSYS Inc. USA, 2018.
  • [20] M. S. Aköz, N. G. Soydan, ve O. Şimşek, “Kritik üstü açik kanal akiminin detached eddy ve large eddy simülasyon ile sayısal modellenmesi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, c. 4, s. 4, ss. 213-224, 2016.
  • [21] T. Avudaiappan, V. Vijayan, S. S. Pandiyan, M. Saravanan ve S. Dinesh, “Potential flow simulation through lagrangian interpolation meshless method coding,” Journal of Applied Fluid Mechanics, vol.11, pp. 129-134, 2018.
  • [22] N. G. Soydan, O. Şimşek ve M. S. Aköz, “Prediction and validation of turbulent flow around a cylindrical weir,” European Water, vol. 57, pp. 85-92, 2017.
  • [23] R. Dutta ve T. Xing, “Quantitative solution verification of large eddy simulation of channel flow,” In Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer, Las Vegas, 2017, April.
  • [24] M. S. Kirkgoz, M. S. Akoz ve A. A. Oner, “Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested weirs,” Canadian Journal of Civil Engineering, vol.35 no. 9, pp. 975-986, 2008.
  • [25] O. Şimşek, N. G. Soydan, V. Gümüş, M. S., Aköz ve M. S. Kırkgöz, “Numerical modeling of B-Type hydraulic jump at an abrupt drop,” Teknik Dergi, vol. 26, no. 4, pp. 7215-7240, 2015.
  • [26] P. J. Roache, “Perspective: a method for uniform reporting of grid refinement studies,” Journal of Fluids Engineering -Transactions of the ASME, c. 116, s. 3, ss. 405-413, 1994.
  • [27] L. Eça ve M. Hoekstra, “A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies,” Journal of Computational Physics, vol. 262, pp. 104-130, 2014.
  • [28] A. Mansour ve E. Laurien, “Numerical error analysis for three-dimensional CFD simulations in the two-room model containment THAI+: Grid convergence index, wall treatment error and scalability tests,” Nuclear Engineering and Design, vol. 326, pp. 220-233, 2018.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Oğuz Şimşek 0000-0001-6324-0229

Hüseyin İşlek 0000-0003-4188-778X

Veysel Gümüş 0000-0003-2321-9526

Publication Date October 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 5

Cite

APA Şimşek, O., İşlek, H., & Gümüş, V. (2021). Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi. Duzce University Journal of Science and Technology, 9(5), 1875-1890. https://doi.org/10.29130/dubited.897718
AMA Şimşek O, İşlek H, Gümüş V. Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi. DUBİTED. October 2021;9(5):1875-1890. doi:10.29130/dubited.897718
Chicago Şimşek, Oğuz, Hüseyin İşlek, and Veysel Gümüş. “Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi”. Duzce University Journal of Science and Technology 9, no. 5 (October 2021): 1875-90. https://doi.org/10.29130/dubited.897718.
EndNote Şimşek O, İşlek H, Gümüş V (October 1, 2021) Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi. Duzce University Journal of Science and Technology 9 5 1875–1890.
IEEE O. Şimşek, H. İşlek, and V. Gümüş, “Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi”, DUBİTED, vol. 9, no. 5, pp. 1875–1890, 2021, doi: 10.29130/dubited.897718.
ISNAD Şimşek, Oğuz et al. “Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi”. Duzce University Journal of Science and Technology 9/5 (October 2021), 1875-1890. https://doi.org/10.29130/dubited.897718.
JAMA Şimşek O, İşlek H, Gümüş V. Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi. DUBİTED. 2021;9:1875–1890.
MLA Şimşek, Oğuz et al. “Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi”. Duzce University Journal of Science and Technology, vol. 9, no. 5, 2021, pp. 1875-90, doi:10.29130/dubited.897718.
Vancouver Şimşek O, İşlek H, Gümüş V. Kuru Yatakta Oluşan Baraj Yıkılmasının Sayısal Modellemesi. DUBİTED. 2021;9(5):1875-90.