Research Article
BibTex RIS Cite

Mikro Boyutlarda Çimento, Mineral ve Kimyasal Katkı Etkileşimlerinin İncelenmesi

Year 2021, Volume: 9 Issue: 5, 1638 - 1652, 31.10.2021
https://doi.org/10.29130/dubited.944934

Abstract

Polikarboksilat esaslı kimyasal katkıların geliştirilmesi ile yeni bir beton türü olan kendiliğinden yerleşen betonlar (KYB) hayata geçirilmiştir. Bu katkı maddelerinin nano ve mikro boyutlardaki toz malzemelerle etkileşimi, betonun taze ve sertleşmiş özelliklerini mezo ve makro boyutlarda etkilemektedir. Betonun makro boyutlu özelliklerini değiştirmek ve iyileştirmek için nano-mikro boyutlu etkileşimini daha iyi analiz etmek gerekmektedir. Bu çalışmanın amacı çimento, mineral ve kimyasal katkı maddelerinin etkileşimlerini mikro ölçekte incelemektir. Bu amaçla polikarboksilat esaslı plastikleştirici katkı kullanılarak hazırlanan çimento, su, kalsit ve yüksek fırın cürufundan oluşan karışımların zeta potansiyel değerleri analiz edilmiştir. Ayrıca 28. günde sertleşmiş numunelerin SEM analizleri yapılmıştır.

References

  • [1] O.R. Khaleel, S.A. Al-Mishhadani, H.A. Razak, “The effect of coarse aggregate on fresh and hardened properties of self-compacting concrete (SCC),” Procedia Engeering, vol. 14, pp. 805-813, 2011.
  • [2] H.A. Mohamed, “Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions,” Ain Shams Engineering Journal, vol.2, no.2, pp. 79-86, 2011.
  • [3] C. Karakurt, A.O. Çelik, V. Kiriççi, E. Özyaşar, C. Yılmazer, “Kendiliğinden yerleşen beton davranışının hesaplamalı akışkanlar dinamiği ile benzetimi,” Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 20, no. 59, pp. 449-460, 2018.
  • [4] L. Iures, C. Bob, “The Future Concrete: Self-Compacting Concrete,” Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, vol. 56, no. 2, pp. 93, 2010.
  • [5] P.W. Zakka, O.F. Job, N.A. Anigbogu, “Ecological selfcompacting concrete using Gum Arabic as a plasticizer,” West Africa Built Environment Research Conference, Ghana, pp. 10, 2015.
  • [6] Y. Houst, P. Bowen, A. Siebold, “Some basic aspects of the interaction between cement and superplasticizers,” Innovations and Developments in Concrete Materials and Construction, vol. 12, pp. 225-234, 2002.
  • [7] J., Plank, C. Hirsch, “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption,” Cement and concrete research, vol. 37, no. 4, pp. 537-542, 2007.
  • [8] D.L. Kantro, “Influence of water-reducing admixtures on properties of cement paste—a miniature slump test,” Cement, Concrete and Aggregates, vol. 2, no. 2, pp. 95-102, 1980.
  • [9] S. Srinivasan, S.A. Barbhuiya, D. Charan, S.P. Pandey, “Characterising cement–superplasticiser interaction using zeta potential measurements,” Construction and Building Materials, vol. 24, no. 12, pp. 2517-2521, 2010.
  • [10] ASTM C230 / C230M-14, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement,” ASTM International, West Conshohocken, PA, 2014.
  • [11] P.C. Aïtcin, C. Jolicoeur, & J.G. MacGregor, ‘’A look at certain characteristics of superplasticizers and their use in the industry,’’ Concrete international, vol. 16, no. 15, pp. 45-52, 1994.
  • [12] L. Ferrari, J. Kaufmann, F. Winnefeld, J. Plank, “Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements,” Journal of colloid and interface science, vol. 347, no. 1, pp. 15-24, 2010. [13] B. Salopek, D. Krasic, S. Filipovic, “Measurement and application of zeta-potential,” Rudarsko-geolosko-naftni zbornik, vol. 4, no. 1, pp. 147-151, 1992.
  • [14] A. Uçar, “Effect of surface properties on fluorite flatation,”, PhD Thesis, Osmangazi University Institute of Science, Eskişehir, Turkey, pp. 11-22, 1995.
  • [15] A. Uçar, “Colloid and surface chemistry,” Lecture notes, pp. 138-155, 2004.
  • [16] D.J. Shaw, Introduction to colloid and surface chemistry, Butterworths, London. pp. 231, 1970.
  • [17] M.C. Fuerstenau, J.D. Miller, M.C. Kuhn, Chemistry of Flotation, Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers. Inc, New York, pp. 177, 1985.
  • [18] D.N. Fuerstnau, S. Chander, “Thermodynamics of flotation, advences in mineral processing,” In Arbiter Symposium, pp. 121-136, 1985.
  • [19] J.M.W. Mackenzie, “Zeta potential studies on mineral processing measurement techniques and applications,” Mineral Science and Engineering, vol. 3, no. 3, pp. 25-43, 1971.
  • [20]A. Uçar, Y. Kocak, A. Dorum, “Çimento sektöründe zeta potansiyeli,” Engineering Sciences, vol. 5, no. 3, pp. 308-318, 2010.
  • [21] N. Marriaga-Cabrales, F. Machuca-Martínez, “Fundamentals of electrocoagulation,” PeraltaHernández, JM, Rodrigo-Rodrigo, MA & Martínez-Huitle, CA In: Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, Kerala: Research Signpost, pp. 1-16, 2014.
  • [22] B. Ersoy, T. Kavas, S. Dikmen, E. Akbulut, A. Olgun, F.M. Kavas, “Saf C3S Fazının Zamana Bağlı Zeta Potansiyel (ZP) Değişimi İle Hidratasyonu Davranışı (Prizlenme) Arasındaki İlişki,” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 14, no. 3, pp.479-488, 2014. [23]K. Yıldız, A. Dorum, Y. Koçak, “Pomza Zeolit ve Cem I Çimentosunun Minerolojik Moleküler Elektrokinetik ve Termal Uyumunun Yüksek Dayanımlı Betona Etkisinin Araştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 25, no. 4, pp. 867-879, 2010.
  • [24] M. Löbbus, J. Sonnfeld, H.P. van Leeuwen, W. Vogelsberger, J. Lyklema, “An improved method for calculating zeta-potentials from measurements of the electrokinetic sonic amplitude,” Journal of Colloid and interface Science, vol. 229, no. 1, pp. 174-183, 2000.
  • [25] TS EN 197-1, “Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements,” Turkish Standard Institution, Ankara, 2012.
  • [26] M. Gökçe, O. Şimşek, The effect of calcite and blast furnace slag on the rheology properties of self-compacting concrete in meso and macro scales. Revista de la construcción, vol. 20, no. 1, pp. 190-204, 2021.

Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales

Year 2021, Volume: 9 Issue: 5, 1638 - 1652, 31.10.2021
https://doi.org/10.29130/dubited.944934

Abstract

Self-compacting concretes (SCC), a new type of concrete, were realized with the development of polycarboxylate-based chemical additives. The interaction of these additives with the powder materials in the nano and micro scales affects the fresh and hardened properties of concrete in meso and macro scales. To change and improve the macro-dimensional properties of concrete, it is necessary to better analyze the nano-micro-dimensional interaction. The aim of this study is to examine the interactions of cement, mineral and chemical additives in micro scale. For this purpose, the zeta potential values of the mixtures consisting of cement, water, calcite and blast furnace slag prepared by using a polycarboxylate based plasticizer additive were analyzed. In addition, SEM analyzes of hardened samples were made on the 28th days.

References

  • [1] O.R. Khaleel, S.A. Al-Mishhadani, H.A. Razak, “The effect of coarse aggregate on fresh and hardened properties of self-compacting concrete (SCC),” Procedia Engeering, vol. 14, pp. 805-813, 2011.
  • [2] H.A. Mohamed, “Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions,” Ain Shams Engineering Journal, vol.2, no.2, pp. 79-86, 2011.
  • [3] C. Karakurt, A.O. Çelik, V. Kiriççi, E. Özyaşar, C. Yılmazer, “Kendiliğinden yerleşen beton davranışının hesaplamalı akışkanlar dinamiği ile benzetimi,” Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 20, no. 59, pp. 449-460, 2018.
  • [4] L. Iures, C. Bob, “The Future Concrete: Self-Compacting Concrete,” Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, vol. 56, no. 2, pp. 93, 2010.
  • [5] P.W. Zakka, O.F. Job, N.A. Anigbogu, “Ecological selfcompacting concrete using Gum Arabic as a plasticizer,” West Africa Built Environment Research Conference, Ghana, pp. 10, 2015.
  • [6] Y. Houst, P. Bowen, A. Siebold, “Some basic aspects of the interaction between cement and superplasticizers,” Innovations and Developments in Concrete Materials and Construction, vol. 12, pp. 225-234, 2002.
  • [7] J., Plank, C. Hirsch, “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption,” Cement and concrete research, vol. 37, no. 4, pp. 537-542, 2007.
  • [8] D.L. Kantro, “Influence of water-reducing admixtures on properties of cement paste—a miniature slump test,” Cement, Concrete and Aggregates, vol. 2, no. 2, pp. 95-102, 1980.
  • [9] S. Srinivasan, S.A. Barbhuiya, D. Charan, S.P. Pandey, “Characterising cement–superplasticiser interaction using zeta potential measurements,” Construction and Building Materials, vol. 24, no. 12, pp. 2517-2521, 2010.
  • [10] ASTM C230 / C230M-14, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement,” ASTM International, West Conshohocken, PA, 2014.
  • [11] P.C. Aïtcin, C. Jolicoeur, & J.G. MacGregor, ‘’A look at certain characteristics of superplasticizers and their use in the industry,’’ Concrete international, vol. 16, no. 15, pp. 45-52, 1994.
  • [12] L. Ferrari, J. Kaufmann, F. Winnefeld, J. Plank, “Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements,” Journal of colloid and interface science, vol. 347, no. 1, pp. 15-24, 2010. [13] B. Salopek, D. Krasic, S. Filipovic, “Measurement and application of zeta-potential,” Rudarsko-geolosko-naftni zbornik, vol. 4, no. 1, pp. 147-151, 1992.
  • [14] A. Uçar, “Effect of surface properties on fluorite flatation,”, PhD Thesis, Osmangazi University Institute of Science, Eskişehir, Turkey, pp. 11-22, 1995.
  • [15] A. Uçar, “Colloid and surface chemistry,” Lecture notes, pp. 138-155, 2004.
  • [16] D.J. Shaw, Introduction to colloid and surface chemistry, Butterworths, London. pp. 231, 1970.
  • [17] M.C. Fuerstenau, J.D. Miller, M.C. Kuhn, Chemistry of Flotation, Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers. Inc, New York, pp. 177, 1985.
  • [18] D.N. Fuerstnau, S. Chander, “Thermodynamics of flotation, advences in mineral processing,” In Arbiter Symposium, pp. 121-136, 1985.
  • [19] J.M.W. Mackenzie, “Zeta potential studies on mineral processing measurement techniques and applications,” Mineral Science and Engineering, vol. 3, no. 3, pp. 25-43, 1971.
  • [20]A. Uçar, Y. Kocak, A. Dorum, “Çimento sektöründe zeta potansiyeli,” Engineering Sciences, vol. 5, no. 3, pp. 308-318, 2010.
  • [21] N. Marriaga-Cabrales, F. Machuca-Martínez, “Fundamentals of electrocoagulation,” PeraltaHernández, JM, Rodrigo-Rodrigo, MA & Martínez-Huitle, CA In: Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, Kerala: Research Signpost, pp. 1-16, 2014.
  • [22] B. Ersoy, T. Kavas, S. Dikmen, E. Akbulut, A. Olgun, F.M. Kavas, “Saf C3S Fazının Zamana Bağlı Zeta Potansiyel (ZP) Değişimi İle Hidratasyonu Davranışı (Prizlenme) Arasındaki İlişki,” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 14, no. 3, pp.479-488, 2014. [23]K. Yıldız, A. Dorum, Y. Koçak, “Pomza Zeolit ve Cem I Çimentosunun Minerolojik Moleküler Elektrokinetik ve Termal Uyumunun Yüksek Dayanımlı Betona Etkisinin Araştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 25, no. 4, pp. 867-879, 2010.
  • [24] M. Löbbus, J. Sonnfeld, H.P. van Leeuwen, W. Vogelsberger, J. Lyklema, “An improved method for calculating zeta-potentials from measurements of the electrokinetic sonic amplitude,” Journal of Colloid and interface Science, vol. 229, no. 1, pp. 174-183, 2000.
  • [25] TS EN 197-1, “Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements,” Turkish Standard Institution, Ankara, 2012.
  • [26] M. Gökçe, O. Şimşek, The effect of calcite and blast furnace slag on the rheology properties of self-compacting concrete in meso and macro scales. Revista de la construcción, vol. 20, no. 1, pp. 190-204, 2021.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Gökçe 0000-0002-8117-0866

Osman Şimşek 0000-0003-3842-5541

Kenan Toklu 0000-0003-1288-845X

Publication Date October 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 5

Cite

APA Gökçe, M., Şimşek, O., & Toklu, K. (2021). Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(5), 1638-1652. https://doi.org/10.29130/dubited.944934
AMA Gökçe M, Şimşek O, Toklu K. Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales. DUBİTED. October 2021;9(5):1638-1652. doi:10.29130/dubited.944934
Chicago Gökçe, Murat, Osman Şimşek, and Kenan Toklu. “Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 5 (October 2021): 1638-52. https://doi.org/10.29130/dubited.944934.
EndNote Gökçe M, Şimşek O, Toklu K (October 1, 2021) Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 5 1638–1652.
IEEE M. Gökçe, O. Şimşek, and K. Toklu, “Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales”, DUBİTED, vol. 9, no. 5, pp. 1638–1652, 2021, doi: 10.29130/dubited.944934.
ISNAD Gökçe, Murat et al. “Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/5 (October 2021), 1638-1652. https://doi.org/10.29130/dubited.944934.
JAMA Gökçe M, Şimşek O, Toklu K. Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales. DUBİTED. 2021;9:1638–1652.
MLA Gökçe, Murat et al. “Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 5, 2021, pp. 1638-52, doi:10.29130/dubited.944934.
Vancouver Gökçe M, Şimşek O, Toklu K. Investigation of Cement, Mineral and Chemical Additive Interactions in Micro Scales. DUBİTED. 2021;9(5):1638-52.