Research Article
BibTex RIS Cite

Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü

Year 2022, Volume: 10 Issue: 1, 1 - 13, 31.01.2022
https://doi.org/10.29130/dubited.854786

Abstract

Endüstri ve tıp alanında, kendi kendini dengeleyen robotlar hakkında tüm dünyada yapılan çalışmalar son yıllarda hız kazanmıştır. Bu tip robotların kullanım alanının genişlemesiyle birlikte karşılaşılan en büyük sorunun, robotların kontrol mekanizmaları olduğu anlaşılmaktadır. Yapıları gereği kontrol edilmesi zor olan bu robotlar için literatürde çok sayıda çalışma bulunmaktadır. Bu çalışmalar incelendiğinde klasik kontrol metotlarının, bu tip robotları kontrol etmekte yetersiz kaldığı görülmektedir. Fakat klasik kontrolcüler kullanılarak geliştirilen yeni nesil karma kontrol metotlarının robotlara uygulanmasıyla birlikte robotların istenilen hareketleri daha hızlı ve kararlı bir şekilde gerçekleştirdiği gözlemlenmektedir. Bu nedenle, klasik kontrol metotlarından PID kontrolcü parametrelerinin, bulanık mantıklı kontrol metodu ile belirlenerek oluşturulan karma bir kontrol metodu bu çalışmada önerilmekte ve kendi kendini dengeleyen robota uygulanmaktadır. Ayrıca yapılan çalışmalar incelendiğinde, sadece kendi kendini dengeleyen robotların analizinin gerçekleştirildiği görülmektedir. Yapılan bu çalışmada sürücü de sisteme dahil edilerek analiz edilmiştir. İlk olarak iki tekerlekli kendi kendini dengeleyen robot modellenmiş ve bu sistem için sadece PID (oransal, integral ve türevsel) kontrolcü ve Bulanık Mantık-PID (Fuzzy Logic-PID) kontrolcü tasarlanmıştır. Bulanık Mantık-PID kontrolcünün değişken kazanım katsayılarına sahip olması klasik kontrolcülerden daha hızlı tepki vermesini sağlamaktadır. PID ve Bulanık Mantık-PID kontrolcüler ile elde edilen benzetim sonuçları karşılaştırılmıştır. Çalışmanın sonunda Bulanık Mantık-PID kontrolcünün, kontrolcü kazanımlarını kendi kendine ayarlayabildiği ve istenilen hız ve pozisyona ulaşmakta başarılı bir performansa sahip olduğu anlaşılmıştır.

References

  • [1]M. L. Nicora, R. Ambrosetti, G. J. Wiens ve I. Fassi, "Human–Robot Collaboration in Smart Manufacturing: Robot Reactive Behavior Intelligence," J. Manuf. Sci. Eng. vol. 143, no. 3, pp. 31009-31018, 2021.
  • [2]T. T. Lewis, H. Kim, A. Darcy-Mahoney, M. Waldron, W. H. Lee ve C. H. Park, “Robotic uses in pediatric care: A comprehensive review,” J. Pediatr. Nurs. vol. 58, pp.65-75, 2021
  • [3]D. Giansanti, “The Social Robot in Rehabilitation and Assistance: What Is the Future?,” Healthcare, vol. 9, no. 3, pp. 244, 2021.
  • [4]H. Go, M. Kang, ve S. C. Suh, “Machine learning of robots in tourism and hos-pitality: Interactive technology acceptance model (iTAM)–cutting edge.,” Tourism Review. vol.75, no.4, pp. 625-636, 2020.
  • [5]D. Özdemir ve S. Karaman, “Investigating interactions between students with mild mental retardation and humanoid robot in terms of feedback types,” Egitim ve Bilim, vol. 42, no.191, pp. 109-138, 2017.
  • [6]A. M. Johnson, ve A. Nasar, “Design and development of a two wheeled self balancing robot for an application of object carrying,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 7, pp. 580-585, 2017.
  • [7]A. Efe, O. Şencan, M. H. Cılasun, ve H. Temeltaş, “Ters sarkaç kendini dengeleyen robot,” Otomatik Kontrol Ulusal Toplantısı (TOK2016), Eskişehir, Türkiye, 2016, pp. 796-801.
  • [8]T. Tomasic, A. Demetlika, ve M. Crnekovic, “Self-balancing mobile robot tilter,” Transactions of FAMENA Academic Journal, vol. 36, pp. 23-32, 2012.
  • [9]H. Ping, W. Hai, L. Linfeng, K. Huifang, Y. Ming, J. Canghau, ve M. Zhihong, "A novel hierarchical sliding mode control strategy for a two-wheeled self-balancing vehicle," 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017, pp. 3731-3736.
  • [10]W. An, ve Y. Li , “Simulation and control of a two-wheeled self-balancing robot,” 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, pp. 456-461.
  • [11]M. A. Şen, M. Kalyoncu, ve M. Tınkır, “İki tekerlekli kendi kendini dengeleyebilen bir araç için yapay sinir ağı ve bulanık mantık kontrol tabanlı kontrolcü tasarımı,” Otomatik Kontrol Ulusal Toplantısı (TOK2014), Kocaeli, Türkiye, 2014, pp. 682-687.
  • [12]J. Wu ve W. Zhang, "Design of fuzzy logic controller for two-wheeled self-balancing robot," Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, China, 2011, pp. 1266-1270.
  • [13]J. Huang, M. Ri, D. Wu, ve S. Ri, “Interval type-2 fuzzy logic modelling and control of a mobile two-wheeled inverted pendulum,” IEEE Transaction of Fuzzy Systems, vol. 26, no. 4, pp. 2030-2038, 2018.
  • [14]H. I. Ali ve M. J. Kadhim, “Sliding mode controller design for mobile inverted pendulum system,” Iraq Journal of Computers, Communications, Control of System Engineering (IJCCE), vol. 18, no. 2, pp. 17-29, 2018.
  • [15]B. A. Kovacs, G. Stepan, Z. Wang ve T. Insperger, "Electro-mechanical model of a two-wheeled vehicle balancing a passive human subject," 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 2019, pp.678-683.
  • [16]G. Prabhakar S. Selvaperumal, P. N. Pugazhenthi, K. Umamaheswari ve P. Elamurugan “Online optimization based model predictive control on two wheel Segway system,” Materials Today: Proceedings, vol. 18, pp. 3846-3853, 2020.
  • [17]M. Ciezkowski, “ Modelling the interaction between two wheeled self balancing vehicle and its rider,” Int. J. of Applied Mechanics and Engineering, vol. 18, no. 2, pp. 341-351, 2013.
  • [18]F. A. Raheem, B. F. Midhat ve H. S. Mohammed “PID and fuzzy logic controller design for balancing robot stabilization,” Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), vol.18, no. 1, pp.1-10, 2017.
  • [19]T. A. Mai, D. T. Son, D N. Anisimov ve E. Fedorova, “Fuzzy-pıd controller for two wheels balancing robot based on stm32 microcontroller,” In: 2019 International Conference on Engineering Technologies and Computer Science (EnT). IEEE, Moscow, Russia, 2019, pp. 20-24.
  • [20]C. Iwendi, M. A. Algarni, J. H. Anajemba, A. S. Alkaheef, Z. Zhang ve A. K. Bashir, “Robust navigational control of a two-wheeled self-balancing robot in a sensed environment,” IEEE Access, vol. 7, pp. 82337-82348, 2019.
  • [21]M. A. Meggiolaro (2009, 29 Ağustos), Riobotz compat robot tutorial. [Online]. Erişim: https://www.riobotz.com/riobotz-combot-tutorial.
  • [22]D. A. Winter, A. E. Patla, F. Prince, M. Ishac, ve K. Gielo-Perczak, “Stiffness Control of Balance İn Quiet Standing,” Journal of Neurophysiology, vol. 80, pp. 1211-1221, 1998.
  • [23]I. D. Loram, S. M. Kelly, ve M. Lakie,“Human balancing of an inverted pendulum: ıs sway size controlled by ankle ımpedance,” Journal of Physiology, vol. 532, no. 3, pp. 879-891, 2001.
  • [24]M. Ciezkowski, “Method for determination of ınteraction between a two-wheeled self-balancing vehicle and ıts rider,” Mechanika, vol. 22, no. 5, pp. 416-424, 2016.
  • [25]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no 3, pp. 338-353, 1965.
  • [26]Y. Hacıoğlu, “Bir robotun bulanık mantıklı kayan kipli kontrolü,” Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye, 2004.

Fuzzy Logic-PID Control of a Segway Robot with Its Rider

Year 2022, Volume: 10 Issue: 1, 1 - 13, 31.01.2022
https://doi.org/10.29130/dubited.854786

Abstract

The research on self-balancing robot has expanded in recent years at industrial and medical etc. areas around the world. The main problem of modelling these robots is the complexity of the control mechanisms. There are many studies in the literature for these robots which are difficult to control due to their structure. It is clear that classical control methods are insufficient to control such robots when the previous studies are investigated. However, the classical controllers combined with new generation control methods such as fuzzy logic are efficient to perform the desired movements of robots in a faster and more stable manner. Therefore, the conventional control methods, PID controller parameters are determined by fuzzy logic control and a new hybrid controller is proposed then applied to self-balancing robot. In addition, when the previous studies are examined, it is seen that only self-balancing robots are analyzed. In this study, the driver was also included in the system and analyzed. This study is presented the modeling of two-wheeled self-balancing robot and the design of PID (proportional, integral and derivative) and Fuzzy-PID control for the system. These variable gains make the Fuzzy-PID controller stable with rapid response time than the conventional control methods. The simulation results with PID and Fuzzy-PID controller are compared. It is figured out that Fuzzy-PID controller has self-tuning capacities and satisfactory performance to achieve desired velocity and position.

References

  • [1]M. L. Nicora, R. Ambrosetti, G. J. Wiens ve I. Fassi, "Human–Robot Collaboration in Smart Manufacturing: Robot Reactive Behavior Intelligence," J. Manuf. Sci. Eng. vol. 143, no. 3, pp. 31009-31018, 2021.
  • [2]T. T. Lewis, H. Kim, A. Darcy-Mahoney, M. Waldron, W. H. Lee ve C. H. Park, “Robotic uses in pediatric care: A comprehensive review,” J. Pediatr. Nurs. vol. 58, pp.65-75, 2021
  • [3]D. Giansanti, “The Social Robot in Rehabilitation and Assistance: What Is the Future?,” Healthcare, vol. 9, no. 3, pp. 244, 2021.
  • [4]H. Go, M. Kang, ve S. C. Suh, “Machine learning of robots in tourism and hos-pitality: Interactive technology acceptance model (iTAM)–cutting edge.,” Tourism Review. vol.75, no.4, pp. 625-636, 2020.
  • [5]D. Özdemir ve S. Karaman, “Investigating interactions between students with mild mental retardation and humanoid robot in terms of feedback types,” Egitim ve Bilim, vol. 42, no.191, pp. 109-138, 2017.
  • [6]A. M. Johnson, ve A. Nasar, “Design and development of a two wheeled self balancing robot for an application of object carrying,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 7, pp. 580-585, 2017.
  • [7]A. Efe, O. Şencan, M. H. Cılasun, ve H. Temeltaş, “Ters sarkaç kendini dengeleyen robot,” Otomatik Kontrol Ulusal Toplantısı (TOK2016), Eskişehir, Türkiye, 2016, pp. 796-801.
  • [8]T. Tomasic, A. Demetlika, ve M. Crnekovic, “Self-balancing mobile robot tilter,” Transactions of FAMENA Academic Journal, vol. 36, pp. 23-32, 2012.
  • [9]H. Ping, W. Hai, L. Linfeng, K. Huifang, Y. Ming, J. Canghau, ve M. Zhihong, "A novel hierarchical sliding mode control strategy for a two-wheeled self-balancing vehicle," 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017, pp. 3731-3736.
  • [10]W. An, ve Y. Li , “Simulation and control of a two-wheeled self-balancing robot,” 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, pp. 456-461.
  • [11]M. A. Şen, M. Kalyoncu, ve M. Tınkır, “İki tekerlekli kendi kendini dengeleyebilen bir araç için yapay sinir ağı ve bulanık mantık kontrol tabanlı kontrolcü tasarımı,” Otomatik Kontrol Ulusal Toplantısı (TOK2014), Kocaeli, Türkiye, 2014, pp. 682-687.
  • [12]J. Wu ve W. Zhang, "Design of fuzzy logic controller for two-wheeled self-balancing robot," Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, China, 2011, pp. 1266-1270.
  • [13]J. Huang, M. Ri, D. Wu, ve S. Ri, “Interval type-2 fuzzy logic modelling and control of a mobile two-wheeled inverted pendulum,” IEEE Transaction of Fuzzy Systems, vol. 26, no. 4, pp. 2030-2038, 2018.
  • [14]H. I. Ali ve M. J. Kadhim, “Sliding mode controller design for mobile inverted pendulum system,” Iraq Journal of Computers, Communications, Control of System Engineering (IJCCE), vol. 18, no. 2, pp. 17-29, 2018.
  • [15]B. A. Kovacs, G. Stepan, Z. Wang ve T. Insperger, "Electro-mechanical model of a two-wheeled vehicle balancing a passive human subject," 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 2019, pp.678-683.
  • [16]G. Prabhakar S. Selvaperumal, P. N. Pugazhenthi, K. Umamaheswari ve P. Elamurugan “Online optimization based model predictive control on two wheel Segway system,” Materials Today: Proceedings, vol. 18, pp. 3846-3853, 2020.
  • [17]M. Ciezkowski, “ Modelling the interaction between two wheeled self balancing vehicle and its rider,” Int. J. of Applied Mechanics and Engineering, vol. 18, no. 2, pp. 341-351, 2013.
  • [18]F. A. Raheem, B. F. Midhat ve H. S. Mohammed “PID and fuzzy logic controller design for balancing robot stabilization,” Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), vol.18, no. 1, pp.1-10, 2017.
  • [19]T. A. Mai, D. T. Son, D N. Anisimov ve E. Fedorova, “Fuzzy-pıd controller for two wheels balancing robot based on stm32 microcontroller,” In: 2019 International Conference on Engineering Technologies and Computer Science (EnT). IEEE, Moscow, Russia, 2019, pp. 20-24.
  • [20]C. Iwendi, M. A. Algarni, J. H. Anajemba, A. S. Alkaheef, Z. Zhang ve A. K. Bashir, “Robust navigational control of a two-wheeled self-balancing robot in a sensed environment,” IEEE Access, vol. 7, pp. 82337-82348, 2019.
  • [21]M. A. Meggiolaro (2009, 29 Ağustos), Riobotz compat robot tutorial. [Online]. Erişim: https://www.riobotz.com/riobotz-combot-tutorial.
  • [22]D. A. Winter, A. E. Patla, F. Prince, M. Ishac, ve K. Gielo-Perczak, “Stiffness Control of Balance İn Quiet Standing,” Journal of Neurophysiology, vol. 80, pp. 1211-1221, 1998.
  • [23]I. D. Loram, S. M. Kelly, ve M. Lakie,“Human balancing of an inverted pendulum: ıs sway size controlled by ankle ımpedance,” Journal of Physiology, vol. 532, no. 3, pp. 879-891, 2001.
  • [24]M. Ciezkowski, “Method for determination of ınteraction between a two-wheeled self-balancing vehicle and ıts rider,” Mechanika, vol. 22, no. 5, pp. 416-424, 2016.
  • [25]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no 3, pp. 338-353, 1965.
  • [26]Y. Hacıoğlu, “Bir robotun bulanık mantıklı kayan kipli kontrolü,” Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye, 2004.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömür Can Özgüney 0000-0003-4778-9531

Nuray Korkmaz Can 0000-0002-7140-290X

Huseyin Yıldız 0000-0002-0575-3904

Publication Date January 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Özgüney, Ö. C., Korkmaz Can, N., & Yıldız, H. (2022). Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü. Duzce University Journal of Science and Technology, 10(1), 1-13. https://doi.org/10.29130/dubited.854786
AMA Özgüney ÖC, Korkmaz Can N, Yıldız H. Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü. DUBİTED. January 2022;10(1):1-13. doi:10.29130/dubited.854786
Chicago Özgüney, Ömür Can, Nuray Korkmaz Can, and Huseyin Yıldız. “Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü”. Duzce University Journal of Science and Technology 10, no. 1 (January 2022): 1-13. https://doi.org/10.29130/dubited.854786.
EndNote Özgüney ÖC, Korkmaz Can N, Yıldız H (January 1, 2022) Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü. Duzce University Journal of Science and Technology 10 1 1–13.
IEEE Ö. C. Özgüney, N. Korkmaz Can, and H. Yıldız, “Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü”, DUBİTED, vol. 10, no. 1, pp. 1–13, 2022, doi: 10.29130/dubited.854786.
ISNAD Özgüney, Ömür Can et al. “Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü”. Duzce University Journal of Science and Technology 10/1 (January 2022), 1-13. https://doi.org/10.29130/dubited.854786.
JAMA Özgüney ÖC, Korkmaz Can N, Yıldız H. Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü. DUBİTED. 2022;10:1–13.
MLA Özgüney, Ömür Can et al. “Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü”. Duzce University Journal of Science and Technology, vol. 10, no. 1, 2022, pp. 1-13, doi:10.29130/dubited.854786.
Vancouver Özgüney ÖC, Korkmaz Can N, Yıldız H. Sürücülü Kendi Kendini Dengeleyen Bir Robotun Bulanık Mantıklı PID Kontrolü. DUBİTED. 2022;10(1):1-13.

Cited By

FUZZY LOGIC CONTROL (FLC) FOR A YARN CONDITIONING SYSTEM
International Journal of Engineering and Innovative Research
https://doi.org/10.47933/ijeir.1226464